2017-08-30 00:00:16 +00:00
//////////////////////////////////////////////////////////////////////
2019-03-23 04:13:18 +00:00
// LibFile: transforms.scad
2021-09-06 22:07:03 +00:00
// Functions and modules that provide shortcuts for translation,
// rotation and mirror operations. Also provided are skew and frame_map
// which remaps the coordinate axes. The shortcuts can act on
// geometry, like the usual OpenSCAD rotate() and translate(). They
// also work as functions that operate on lists of points in various
// forms: paths, VNFS and bezier patches. Lastly, the function form
// of the shortcuts can return a matrix representing the operation
// the shortcut performs. The rotation and scaling shortcuts accept
// an optional centerpoint for the rotation or scaling operation.
2021-10-07 01:16:39 +00:00
// .
// Almost all of the transformation functions take a point, a point
// list, bezier patch, or VNF as a second positional argument to
// operate on. The exceptions are rot(), frame_map() and skew().
2021-01-05 09:20:01 +00:00
// Includes:
2019-04-19 07:25:10 +00:00
// include <BOSL2/std.scad>
2021-12-13 23:48:30 +00:00
// FileGroup: Basic Modeling
// FileSummary: Shortcuts for translation, rotation, etc. Can act on geometry, paths, or can return a matrix.
// FileFootnotes: STD=Included in std.scad
2017-08-30 00:00:16 +00:00
//////////////////////////////////////////////////////////////////////
2021-12-28 22:05:37 +00:00
// Section: Affine Transformations
// OpenSCAD provides various built-in modules to transform geometry by
// translation, scaling, rotation, and mirroring. All of these operations
// are affine transformations. A three-dimensional affine transformation
// can be represented by a 4x4 matrix. The transformation shortcuts in this
// file generally have three modes of operation. They can operate
// directly on geometry like their OpenSCAD built-in equivalents. For example,
// `left(10) cube()`. They can operate on a list of points (or various other
// types of geometric data). For example, operating on a list of points: `points = left(10, [[1,2,3],[4,5,6]])`.
// The third option is that the shortcut can return the transformation matrix
// corresponding to its action. For example, `M=left(10)`.
// .
// This capability allows you to store and manipulate transformations, and can
// be useful in more advanced modeling. You can multiply these matrices
// together, analogously to applying a sequence of operations with the
// built-in transformations. So you can write `zrot(37)left(5)cube()`
// to perform two operations on a cube. You can also store
// that same transformation by multiplying the matrices together: `M = zrot(37) * left(5)`.
// Note that the order is exactly the same as the order used to apply the transformation.
// .
// Suppose you have constructed `M` as above. What now? You can use
// the OpensCAD built-in `multmatrix` to apply it to some geometry: `multmatrix(M) cube()`.
// Alternative you can use the BOSL2 function `apply` to apply `M` to a point, a list
// of points, a bezier patch, or a VNF. For example, `points = apply(M, [[3,4,5],[5,6,7]])`.
// Note that the `apply` function can work on both 2D and 3D data, but if you want to
// operate on 2D data, you must choose transformations that don't modify z
// .
// You can use matrices as described above without understanding the details, just
// treating a matrix as a box that stores a transformation. The OpenSCAD manual section for multmatrix
// gives some details of how this works. We'll elaborate a bit more below. An affine transformation
// matrix for three dimensional data is a 4x4 matrix. The top left 3x3 portion gives the linear
// transformation to apply to the data. For example, it could be a rotation or scaling, or combination of both.
// The 3x1 column at the top right gives the translation to apply. The bottom row should be `[0,0,0,1]`. That
// bottom row is only present to enable
// the matrices to be multiplied together. OpenSCAD ignores it and in fact `multmatrix` will
// accept a 3x4 matrix, where that row is missing. In order for a matrix to act on a point you have to
// augment the point with an extra 1, making it a length 4 vector. In OpenSCAD you can then compute the
// the affine transformed point as `tran_point = M * point`. However, this syntax hides a complication that
// arises if you have a list of points. A list of points like `[[1,2,3,1],[4,5,6,1],[7,8,9,1]]` has the augmented points
// as row vectors on the list. In order to transform such a list, it needs to be muliplied on the right
// side, not the left side.
2017-08-30 00:00:16 +00:00
2021-10-24 14:57:17 +00:00
_NO_ARG = [ true , [ 123232345 ] , false ] ;
2021-12-28 22:05:37 +00:00
//////////////////////////////////////////////////////////////////////
// Section: Translations
//////////////////////////////////////////////////////////////////////
2019-05-27 01:14:26 +00:00
// Function&Module: move()
2021-02-26 21:07:11 +00:00
// Aliases: translate()
2019-03-23 04:13:18 +00:00
//
2019-05-27 01:14:26 +00:00
// Usage: As Module
2021-06-27 03:59:33 +00:00
// move([x=], [y=], [z=]) ...
2019-12-04 10:24:34 +00:00
// move(v) ...
2019-05-27 01:14:26 +00:00
// Usage: Translate Points
2019-12-04 10:24:34 +00:00
// pts = move(v, p);
2021-06-27 03:59:33 +00:00
// pts = move([x=], [y=], [z=], p=);
2019-05-27 01:14:26 +00:00
// Usage: Get Translation Matrix
2019-12-04 10:24:34 +00:00
// mat = move(v);
2021-06-27 03:59:33 +00:00
// mat = move([x=], [y=], [z=]);
2021-02-26 21:07:11 +00:00
//
// Topics: Affine, Matrices, Transforms, Translation
2021-10-02 04:01:24 +00:00
// See Also: left(), right(), fwd(), back(), down(), up(), spherical_to_xyz(), altaz_to_xyz(), cylindrical_to_xyz(), polar_to_xy()
2019-12-04 10:24:34 +00:00
//
// Description:
// Translates position by the given amount.
// * Called as a module, moves/translates all children.
// * Called as a function with a point in the `p` argument, returns the translated point.
// * Called as a function with a list of points in the `p` argument, returns the translated list of points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the translated patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the translated VNF.
// * Called as a function with the `p` argument, returns the translated point or list of points.
// * Called as a function without a `p` argument, with a 2D offset vector `v`, returns an affine2d translation matrix.
// * Called as a function without a `p` argument, with a 3D offset vector `v`, returns an affine3d translation matrix.
2019-03-23 04:13:18 +00:00
//
// Arguments:
2019-12-04 10:24:34 +00:00
// v = An [X,Y,Z] vector to translate by.
2021-02-26 21:07:11 +00:00
// p = Either a point, or a list of points to be translated when used as a function.
// ---
2017-08-30 00:00:16 +00:00
// x = X axis translation.
// y = Y axis translation.
// z = Z axis translation.
2019-03-23 04:13:18 +00:00
//
2017-08-30 00:00:16 +00:00
// Example:
2019-03-23 04:13:18 +00:00
// #sphere(d=10);
// move([0,20,30]) sphere(d=10);
//
// Example:
// #sphere(d=10);
// move(y=20) sphere(d=10);
//
// Example:
// #sphere(d=10);
// move(x=-10, y=-5) sphere(d=10);
2019-05-27 01:14:26 +00:00
//
2021-07-21 00:02:24 +00:00
// Example(FlatSpin): Using Altitude-Azimuth Coordinates
// #sphere(d=10);
// move(altaz_to_xyz(30,90,20)) sphere(d=10);
//
// Example(FlatSpin): Using Spherical Coordinates
// #sphere(d=10);
// move(spherical_to_xyz(20,45,30)) sphere(d=10);
//
2019-12-04 10:24:34 +00:00
// Example(2D):
// path = square([50,30], center=true);
// #stroke(path, closed=true);
// stroke(move([10,20],p=path), closed=true);
//
2019-05-27 01:14:26 +00:00
// Example(NORENDER):
// pt1 = move([0,20,30], p=[15,23,42]); // Returns: [15, 43, 72]
// pt2 = move(y=10, p=[15,23,42]); // Returns: [15, 33, 42]
// pt3 = move([0,3,1], p=[[1,2,3],[4,5,6]]); // Returns: [[1,5,4], [4,8,7]]
// pt4 = move(y=11, p=[[1,2,3],[4,5,6]]); // Returns: [[1,13,3], [4,16,6]]
// mat2d = move([2,3]); // Returns: [[1,0,2],[0,1,3],[0,0,1]]
// mat3d = move([2,3,4]); // Returns: [[1,0,0,2],[0,1,0,3],[0,0,1,4],[0,0,0,1]]
2021-02-26 21:07:11 +00:00
module move ( v = [ 0 , 0 , 0 ] , p , x = 0 , y = 0 , z = 0 ) {
assert ( is_undef ( p ) , "Module form `move()` does not accept p= argument." ) ;
2021-12-28 22:05:37 +00:00
assert ( is_vector ( v ) && ( len ( v ) = = 3 || len ( v ) = = 2 ) , "Invalid value for `v`" )
2020-05-30 02:04:34 +00:00
translate ( point3d ( v ) + [ x , y , z ] ) children ( ) ;
2017-08-30 00:00:16 +00:00
}
2021-10-24 14:57:17 +00:00
function move ( v = [ 0 , 0 , 0 ] , p = _NO_ARG , x = 0 , y = 0 , z = 0 ) =
2021-12-28 22:05:37 +00:00
assert ( is_vector ( v ) && ( len ( v ) = = 3 || len ( v ) = = 2 ) , "Invalid value for `v`" )
2021-10-11 01:40:22 +00:00
let (
2021-12-28 22:05:37 +00:00
m = affine3d_translate ( point3d ( v ) + [ x , y , z ] )
2021-10-11 01:40:22 +00:00
)
2021-10-24 14:57:17 +00:00
p = = _NO_ARG ? m : apply ( m , p ) ;
2019-05-27 01:14:26 +00:00
2021-10-24 14:57:17 +00:00
function translate ( v = [ 0 , 0 , 0 ] , p = _NO_ARG ) = move ( v = v , p = p ) ;
2019-08-06 23:43:41 +00:00
2017-08-30 00:00:16 +00:00
2019-08-22 06:54:36 +00:00
// Function&Module: left()
2019-03-23 04:13:18 +00:00
//
2019-08-22 06:54:36 +00:00
// Usage: As Module
2019-03-23 04:13:18 +00:00
// left(x) ...
2019-08-22 06:54:36 +00:00
// Usage: Translate Points
// pts = left(x, p);
// Usage: Get Translation Matrix
// mat = left(x);
//
2021-02-26 21:07:11 +00:00
// Topics: Affine, Matrices, Transforms, Translation
2021-10-02 04:01:24 +00:00
// See Also: move(), right(), fwd(), back(), down(), up()
2021-02-26 21:07:11 +00:00
//
2019-08-22 06:54:36 +00:00
// Description:
// If called as a module, moves/translates all children left (in the X- direction) by the given amount.
// If called as a function with the `p` argument, returns the translated point or list of points.
// If called as a function without the `p` argument, returns an affine3d translation matrix.
2019-03-23 04:13:18 +00:00
//
// Arguments:
// x = Scalar amount to move left.
2019-08-22 06:54:36 +00:00
// p = Either a point, or a list of points to be translated when used as a function.
2019-03-23 04:13:18 +00:00
//
2017-08-30 00:00:16 +00:00
// Example:
2019-03-23 04:13:18 +00:00
// #sphere(d=10);
// left(20) sphere(d=10);
2019-08-22 06:54:36 +00:00
//
// Example(NORENDER):
// pt1 = left(20, p=[23,42]); // Returns: [3,42]
// pt2 = left(20, p=[15,23,42]); // Returns: [-5,23,42]
// pt3 = left(3, p=[[1,2,3],[4,5,6]]); // Returns: [[-2,2,3], [1,5,6]]
// mat3d = left(4); // Returns: [[1,0,0,-4],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
2021-02-26 21:07:11 +00:00
module left ( x = 0 , p ) {
assert ( is_undef ( p ) , "Module form `left()` does not accept p= argument." ) ;
2021-12-28 22:05:37 +00:00
assert ( is_finite ( x ) , "Invalid number" )
2021-02-26 21:07:11 +00:00
translate ( [ - x , 0 , 0 ] ) children ( ) ;
}
2019-03-23 04:13:18 +00:00
2021-12-28 22:05:37 +00:00
function left ( x = 0 , p = _NO_ARG ) = assert ( is_finite ( x ) , "Invalid number" )
move ( [ - x , 0 , 0 ] , p = p ) ;
2019-03-23 04:13:18 +00:00
2019-08-22 06:54:36 +00:00
// Function&Module: right()
2019-03-23 04:13:18 +00:00
//
2019-08-22 06:54:36 +00:00
// Usage: As Module
2019-03-23 04:13:18 +00:00
// right(x) ...
2019-08-22 06:54:36 +00:00
// Usage: Translate Points
// pts = right(x, p);
// Usage: Get Translation Matrix
// mat = right(x);
//
2021-02-26 21:07:11 +00:00
// Topics: Affine, Matrices, Transforms, Translation
2021-10-02 04:01:24 +00:00
// See Also: move(), left(), fwd(), back(), down(), up()
2021-02-26 21:07:11 +00:00
//
2019-08-22 06:54:36 +00:00
// Description:
// If called as a module, moves/translates all children right (in the X+ direction) by the given amount.
// If called as a function with the `p` argument, returns the translated point or list of points.
// If called as a function without the `p` argument, returns an affine3d translation matrix.
2019-03-23 04:13:18 +00:00
//
// Arguments:
// x = Scalar amount to move right.
2019-08-22 06:54:36 +00:00
// p = Either a point, or a list of points to be translated when used as a function.
2019-03-23 04:13:18 +00:00
//
2017-08-30 00:00:16 +00:00
// Example:
2019-03-23 04:13:18 +00:00
// #sphere(d=10);
// right(20) sphere(d=10);
2019-08-22 06:54:36 +00:00
//
// Example(NORENDER):
// pt1 = right(20, p=[23,42]); // Returns: [43,42]
// pt2 = right(20, p=[15,23,42]); // Returns: [35,23,42]
// pt3 = right(3, p=[[1,2,3],[4,5,6]]); // Returns: [[4,2,3], [7,5,6]]
// mat3d = right(4); // Returns: [[1,0,0,4],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
2021-02-26 21:07:11 +00:00
module right ( x = 0 , p ) {
assert ( is_undef ( p ) , "Module form `right()` does not accept p= argument." ) ;
2021-12-28 22:05:37 +00:00
assert ( is_finite ( x ) , "Invalid number" )
2021-02-26 21:07:11 +00:00
translate ( [ x , 0 , 0 ] ) children ( ) ;
}
2019-03-23 04:13:18 +00:00
2021-12-28 22:05:37 +00:00
function right ( x = 0 , p = _NO_ARG ) = assert ( is_finite ( x ) , "Invalid number" )
move ( [ x , 0 , 0 ] , p = p ) ;
2019-03-23 04:13:18 +00:00
2019-08-22 06:54:36 +00:00
// Function&Module: fwd()
2019-03-23 04:13:18 +00:00
//
2019-08-22 06:54:36 +00:00
// Usage: As Module
2019-03-23 04:13:18 +00:00
// fwd(y) ...
2019-08-22 06:54:36 +00:00
// Usage: Translate Points
// pts = fwd(y, p);
// Usage: Get Translation Matrix
// mat = fwd(y);
//
2021-02-26 21:07:11 +00:00
// Topics: Affine, Matrices, Transforms, Translation
2021-10-02 04:01:24 +00:00
// See Also: move(), left(), right(), back(), down(), up()
2021-02-26 21:07:11 +00:00
//
2019-08-22 06:54:36 +00:00
// Description:
// If called as a module, moves/translates all children forward (in the Y- direction) by the given amount.
// If called as a function with the `p` argument, returns the translated point or list of points.
// If called as a function without the `p` argument, returns an affine3d translation matrix.
2019-03-23 04:13:18 +00:00
//
// Arguments:
// y = Scalar amount to move forward.
2019-08-22 06:54:36 +00:00
// p = Either a point, or a list of points to be translated when used as a function.
2019-03-23 04:13:18 +00:00
//
2017-08-30 00:00:16 +00:00
// Example:
2019-03-23 04:13:18 +00:00
// #sphere(d=10);
// fwd(20) sphere(d=10);
2019-08-22 06:54:36 +00:00
//
// Example(NORENDER):
// pt1 = fwd(20, p=[23,42]); // Returns: [23,22]
// pt2 = fwd(20, p=[15,23,42]); // Returns: [15,3,42]
// pt3 = fwd(3, p=[[1,2,3],[4,5,6]]); // Returns: [[1,-1,3], [4,2,6]]
// mat3d = fwd(4); // Returns: [[1,0,0,0],[0,1,0,-4],[0,0,1,0],[0,0,0,1]]
2021-02-26 21:07:11 +00:00
module fwd ( y = 0 , p ) {
assert ( is_undef ( p ) , "Module form `fwd()` does not accept p= argument." ) ;
2021-12-28 22:05:37 +00:00
assert ( is_finite ( y ) , "Invalid number" )
2021-02-26 21:07:11 +00:00
translate ( [ 0 , - y , 0 ] ) children ( ) ;
}
2019-03-23 04:13:18 +00:00
2021-12-28 22:05:37 +00:00
function fwd ( y = 0 , p = _NO_ARG ) = assert ( is_finite ( y ) , "Invalid number" )
move ( [ 0 , - y , 0 ] , p = p ) ;
2019-03-23 04:13:18 +00:00
2019-08-22 06:54:36 +00:00
// Function&Module: back()
2019-03-23 04:13:18 +00:00
//
2019-08-22 06:54:36 +00:00
// Usage: As Module
2019-03-23 04:13:18 +00:00
// back(y) ...
2019-08-22 06:54:36 +00:00
// Usage: Translate Points
// pts = back(y, p);
// Usage: Get Translation Matrix
// mat = back(y);
//
2021-02-26 21:07:11 +00:00
// Topics: Affine, Matrices, Transforms, Translation
2021-10-02 04:01:24 +00:00
// See Also: move(), left(), right(), fwd(), down(), up()
2021-02-26 21:07:11 +00:00
//
2019-08-22 06:54:36 +00:00
// Description:
// If called as a module, moves/translates all children back (in the Y+ direction) by the given amount.
// If called as a function with the `p` argument, returns the translated point or list of points.
// If called as a function without the `p` argument, returns an affine3d translation matrix.
2019-03-23 04:13:18 +00:00
//
// Arguments:
// y = Scalar amount to move back.
2019-08-22 06:54:36 +00:00
// p = Either a point, or a list of points to be translated when used as a function.
2019-03-23 04:13:18 +00:00
//
2017-08-30 00:00:16 +00:00
// Example:
2019-03-23 04:13:18 +00:00
// #sphere(d=10);
// back(20) sphere(d=10);
2019-08-22 06:54:36 +00:00
//
// Example(NORENDER):
// pt1 = back(20, p=[23,42]); // Returns: [23,62]
// pt2 = back(20, p=[15,23,42]); // Returns: [15,43,42]
// pt3 = back(3, p=[[1,2,3],[4,5,6]]); // Returns: [[1,5,3], [4,8,6]]
// mat3d = back(4); // Returns: [[1,0,0,0],[0,1,0,4],[0,0,1,0],[0,0,0,1]]
2021-07-14 20:50:34 +00:00
module back ( y = 0 , p ) {
2021-02-26 21:07:11 +00:00
assert ( is_undef ( p ) , "Module form `back()` does not accept p= argument." ) ;
2021-12-28 22:05:37 +00:00
assert ( is_finite ( y ) , "Invalid number" )
2021-02-26 21:07:11 +00:00
translate ( [ 0 , y , 0 ] ) children ( ) ;
}
2019-03-23 04:13:18 +00:00
2021-12-28 22:05:37 +00:00
function back ( y = 0 , p = _NO_ARG ) = assert ( is_finite ( y ) , "Invalid number" )
move ( [ 0 , y , 0 ] , p = p ) ;
2019-03-23 04:13:18 +00:00
2019-08-22 06:54:36 +00:00
// Function&Module: down()
2019-03-23 04:13:18 +00:00
//
2019-08-22 06:54:36 +00:00
// Usage: As Module
2019-03-23 04:13:18 +00:00
// down(z) ...
2019-08-22 06:54:36 +00:00
// Usage: Translate Points
// pts = down(z, p);
// Usage: Get Translation Matrix
// mat = down(z);
//
2021-02-26 21:07:11 +00:00
// Topics: Affine, Matrices, Transforms, Translation
2021-10-02 04:01:24 +00:00
// See Also: move(), left(), right(), fwd(), back(), up()
2021-02-26 21:07:11 +00:00
//
2019-08-22 06:54:36 +00:00
// Description:
// If called as a module, moves/translates all children down (in the Z- direction) by the given amount.
// If called as a function with the `p` argument, returns the translated point or list of points.
// If called as a function without the `p` argument, returns an affine3d translation matrix.
2019-03-23 04:13:18 +00:00
//
// Arguments:
// z = Scalar amount to move down.
2019-08-22 06:54:36 +00:00
// p = Either a point, or a list of points to be translated when used as a function.
2019-03-23 04:13:18 +00:00
//
2017-08-30 00:00:16 +00:00
// Example:
2019-03-23 04:13:18 +00:00
// #sphere(d=10);
// down(20) sphere(d=10);
2019-08-22 06:54:36 +00:00
//
// Example(NORENDER):
// pt1 = down(20, p=[15,23,42]); // Returns: [15,23,22]
// pt2 = down(3, p=[[1,2,3],[4,5,6]]); // Returns: [[1,2,0], [4,5,3]]
// mat3d = down(4); // Returns: [[1,0,0,0],[0,1,0,0],[0,0,1,-4],[0,0,0,1]]
2021-02-26 21:07:11 +00:00
module down ( z = 0 , p ) {
assert ( is_undef ( p ) , "Module form `down()` does not accept p= argument." ) ;
translate ( [ 0 , 0 , - z ] ) children ( ) ;
}
2019-03-23 04:13:18 +00:00
2021-10-24 14:57:17 +00:00
function down ( z = 0 , p = _NO_ARG ) = move ( [ 0 , 0 , - z ] , p = p ) ;
2019-03-23 04:13:18 +00:00
2019-08-22 06:54:36 +00:00
// Function&Module: up()
2019-03-23 04:13:18 +00:00
//
2019-08-22 06:54:36 +00:00
// Usage: As Module
2019-03-23 04:13:18 +00:00
// up(z) ...
2019-08-22 06:54:36 +00:00
// Usage: Translate Points
// pts = up(z, p);
// Usage: Get Translation Matrix
// mat = up(z);
//
2021-02-26 21:07:11 +00:00
// Topics: Affine, Matrices, Transforms, Translation
2021-10-02 04:01:24 +00:00
// See Also: move(), left(), right(), fwd(), back(), down()
2021-02-26 21:07:11 +00:00
//
2019-08-22 06:54:36 +00:00
// Description:
// If called as a module, moves/translates all children up (in the Z+ direction) by the given amount.
// If called as a function with the `p` argument, returns the translated point or list of points.
// If called as a function without the `p` argument, returns an affine3d translation matrix.
2019-03-23 04:13:18 +00:00
//
// Arguments:
// z = Scalar amount to move up.
2019-08-22 06:54:36 +00:00
// p = Either a point, or a list of points to be translated when used as a function.
2019-03-23 04:13:18 +00:00
//
// Example:
// #sphere(d=10);
// up(20) sphere(d=10);
2019-08-22 06:54:36 +00:00
//
// Example(NORENDER):
// pt1 = up(20, p=[15,23,42]); // Returns: [15,23,62]
// pt2 = up(3, p=[[1,2,3],[4,5,6]]); // Returns: [[1,2,6], [4,5,9]]
// mat3d = up(4); // Returns: [[1,0,0,0],[0,1,0,0],[0,0,1,4],[0,0,0,1]]
2021-02-26 21:07:11 +00:00
module up ( z = 0 , p ) {
assert ( is_undef ( p ) , "Module form `up()` does not accept p= argument." ) ;
2021-12-28 22:05:37 +00:00
assert ( is_finite ( z ) , "Invalid number" ) ;
2021-02-26 21:07:11 +00:00
translate ( [ 0 , 0 , z ] ) children ( ) ;
}
2017-08-30 00:00:16 +00:00
2021-12-28 22:05:37 +00:00
function up ( z = 0 , p = _NO_ARG ) = assert ( is_finite ( z ) , "Invalid number" )
move ( [ 0 , 0 , z ] , p = p ) ;
2019-08-22 06:54:36 +00:00
2017-08-30 00:00:16 +00:00
2019-03-23 04:13:18 +00:00
//////////////////////////////////////////////////////////////////////
// Section: Rotations
//////////////////////////////////////////////////////////////////////
2017-08-30 00:00:16 +00:00
2019-05-27 01:14:26 +00:00
// Function&Module: rot()
2019-03-23 04:13:18 +00:00
//
2021-02-26 21:07:11 +00:00
// Usage: As a Module
2021-06-27 03:59:33 +00:00
// rot(a, [cp], [reverse]) {...}
// rot([X,Y,Z], [cp], [reverse]) {...}
// rot(a, v, [cp], [reverse]) {...}
// rot(from, to, [a], [reverse]) {...}
2021-03-09 21:47:26 +00:00
// Usage: As a Function to transform data in `p`
2021-06-27 03:59:33 +00:00
// pts = rot(a, p=, [cp=], [reverse=]);
// pts = rot([X,Y,Z], p=, [cp=], [reverse=]);
// pts = rot(a, v, p=, [cp=], [reverse=]);
// pts = rot([a], from=, to=, p=, [reverse=]);
2021-03-09 21:47:26 +00:00
// Usage: As a Function to return a transform matrix
2021-06-27 03:59:33 +00:00
// M = rot(a, [cp=], [reverse=], [planar=]);
// M = rot([X,Y,Z], [cp=], [reverse=], [planar=]);
// M = rot(a, v, [cp=], [reverse=], [planar=]);
// M = rot(from=, to=, [a=], [reverse=], [planar=]);
2021-02-26 21:07:11 +00:00
//
// Topics: Affine, Matrices, Transforms, Rotation
2021-10-02 04:01:24 +00:00
// See Also: xrot(), yrot(), zrot()
2019-03-23 04:13:18 +00:00
//
2019-12-04 10:24:34 +00:00
// Description:
// This is a shorthand version of the built-in `rotate()`, and operates similarly, with a few additional capabilities.
// You can specify the rotation to perform in one of several ways:
// * `rot(30)` or `rot(a=30)` rotates 30 degrees around the Z axis.
// * `rot([20,30,40])` or `rot(a=[20,30,40])` rotates 20 degrees around the X axis, then 30 degrees around the Y axis, then 40 degrees around the Z axis.
// * `rot(30, [1,1,0])` or `rot(a=30, v=[1,1,0])` rotates 30 degrees around the axis vector `[1,1,0]`.
2021-03-08 22:08:06 +00:00
// * `rot(from=[0,0,1], to=[1,0,0])` rotates the `from` vector to line up with the `to` vector, in this case the top to the right and hence equivalent to `rot(a=90,v=[0,1,0]`.
// * `rot(from=[0,1,1], to=[1,1,0], a=45)` rotates 45 degrees around the `from` vector ([0,1,1]) and then rotates the `from` vector to align with the `to` vector. Equivalent to `rot(from=[0,1,1],to=[1,1,0]) rot(a=45,v=[0,1,1])`. You can also regard `a` as as post-rotation around the `to` vector. For this form, `a` must be a scalar.
// * If the `cp` centerpoint argument is given, then rotations are performed around that centerpoint. So `rot(args...,cp=[1,2,3])` is equivalent to `move(-[1,2,3])rot(args...)move([1,2,3])`.
// * If the `reverse` argument is true, then the rotations performed will be exactly reversed.
// .
2019-12-04 10:24:34 +00:00
// The behavior and return value varies depending on how `rot()` is called:
// * Called as a module, rotates all children.
// * Called as a function with a `p` argument containing a point, returns the rotated point.
// * Called as a function with a `p` argument containing a list of points, returns the list of rotated points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the rotated patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the rotated VNF.
2021-03-08 22:08:06 +00:00
// * Called as a function without a `p` argument, and `planar` is true, returns the affine2d rotational matrix. The angle `a` must be a scalar.
2019-12-04 10:24:34 +00:00
// * Called as a function without a `p` argument, and `planar` is false, returns the affine3d rotational matrix.
2021-10-07 01:16:39 +00:00
// Note that unlike almost all the other transformations, the `p` argument must be given as a named argument.
2019-12-04 10:24:34 +00:00
//
2019-03-23 04:13:18 +00:00
// Arguments:
2021-03-09 21:47:26 +00:00
// a = Scalar angle or vector of XYZ rotation angles to rotate by, in degrees. If `planar` is true or if `p` holds 2d data, or if you use the `from` and `to` arguments then `a` must be a scalar. Default: `0`
2019-04-19 06:32:17 +00:00
// v = vector for the axis of rotation. Default: [0,0,1] or UP
2021-02-26 21:07:11 +00:00
// ---
2019-01-25 21:47:14 +00:00
// cp = centerpoint to rotate around. Default: [0,0,0]
2019-03-23 04:13:18 +00:00
// from = Starting vector for vector-based rotations.
// to = Target vector for vector-based rotations.
// reverse = If true, exactly reverses the rotation, including axis rotation ordering. Default: false
2019-05-27 01:14:26 +00:00
// planar = If called as a function, this specifies if you want to work with 2D points.
2021-03-09 21:47:26 +00:00
// p = If called as a function, this contains data to rotate: a point, list of points, bezier patch or VNF.
2019-03-23 04:13:18 +00:00
//
2019-01-25 21:47:14 +00:00
// Example:
2019-03-23 04:13:18 +00:00
// #cube([2,4,9]);
2019-01-25 21:47:14 +00:00
// rot([30,60,0], cp=[0,0,9]) cube([2,4,9]);
2019-03-23 04:13:18 +00:00
//
// Example:
// #cube([2,4,9]);
2019-01-25 21:47:14 +00:00
// rot(30, v=[1,1,0], cp=[0,0,9]) cube([2,4,9]);
2019-03-23 04:13:18 +00:00
//
2019-02-27 11:52:59 +00:00
// Example:
2019-03-23 04:13:18 +00:00
// #cube([2,4,9]);
2019-04-19 06:32:17 +00:00
// rot(from=UP, to=LEFT+BACK) cube([2,4,9]);
2019-12-04 10:24:34 +00:00
//
// Example(2D):
// path = square([50,30], center=true);
// #stroke(path, closed=true);
// stroke(rot(30,p=path), closed=true);
2021-02-26 21:07:11 +00:00
module rot ( a = 0 , v , cp , from , to , reverse = false )
2019-03-23 04:13:18 +00:00
{
2020-05-30 02:04:34 +00:00
m = rot ( a = a , v = v , cp = cp , from = from , to = to , reverse = reverse , planar = false ) ;
multmatrix ( m ) children ( ) ;
2019-02-27 11:52:59 +00:00
}
2021-10-24 14:57:17 +00:00
function rot ( a = 0 , v , cp , from , to , reverse = false , planar = false , p = _NO_ARG , _m ) =
2020-05-30 02:04:34 +00:00
assert ( is_undef ( from ) = = is_undef ( to ) , "from and to must be specified together." )
2020-08-26 22:59:35 +00:00
assert ( is_undef ( from ) || is_vector ( from , zero = false ) , "'from' must be a non-zero vector." )
assert ( is_undef ( to ) || is_vector ( to , zero = false ) , "'to' must be a non-zero vector." )
assert ( is_undef ( v ) || is_vector ( v , zero = false ) , "'v' must be a non-zero vector." )
assert ( is_undef ( cp ) || is_vector ( cp ) , "'cp' must be a vector." )
assert ( is_finite ( a ) || is_vector ( a ) , "'a' must be a finite scalar or a vector." )
assert ( is_bool ( reverse ) )
assert ( is_bool ( planar ) )
2021-10-11 01:40:22 +00:00
let (
m = planar ? let (
check = assert ( is_num ( a ) ) ,
cp = is_undef ( cp ) ? cp : point2d ( cp ) ,
m1 = is_undef ( from ) ? affine2d_zrot ( a ) :
assert ( a = = 0 , "'from' and 'to' cannot be used with 'a' when 'planar' is true." )
assert ( approx ( point3d ( from ) . z , 0 ) , "'from' must be a 2D vector when 'planar' is true." )
assert ( approx ( point3d ( to ) . z , 0 ) , "'to' must be a 2D vector when 'planar' is true." )
affine2d_zrot (
v_theta ( to ) -
v_theta ( from )
) ,
m2 = is_undef ( cp ) ? m1 : ( move ( cp ) * m1 * move ( - cp ) ) ,
2021-12-29 22:55:29 +00:00
m3 = reverse ? rot_inverse ( m2 ) : m2
2021-10-11 01:40:22 +00:00
) m3 : let (
from = is_undef ( from ) ? undef : point3d ( from ) ,
to = is_undef ( to ) ? undef : point3d ( to ) ,
cp = is_undef ( cp ) ? undef : point3d ( cp ) ,
2021-12-29 22:55:29 +00:00
m1 = ! is_undef ( from ) ?
2021-10-11 01:40:22 +00:00
assert ( is_num ( a ) )
2021-12-29 22:55:29 +00:00
affine3d_rot_from_to ( from , to ) * affine3d_rot_by_axis ( from , a )
: ! is_undef ( v ) ?
assert ( is_num ( a ) )
affine3d_rot_by_axis ( v , a )
: is_num ( a ) ? affine3d_zrot ( a )
: affine3d_zrot ( a . z ) * affine3d_yrot ( a . y ) * affine3d_xrot ( a . x ) ,
2021-10-11 01:40:22 +00:00
m2 = is_undef ( cp ) ? m1 : ( move ( cp ) * m1 * move ( - cp ) ) ,
2021-12-29 22:55:29 +00:00
m3 = reverse ? rot_inverse ( m2 ) : m2
2021-10-11 01:40:22 +00:00
) m3
)
2021-10-24 14:57:17 +00:00
p = = _NO_ARG ? m : apply ( m , p ) ;
2019-05-27 01:14:26 +00:00
2019-02-27 11:52:59 +00:00
2019-07-11 01:52:33 +00:00
// Function&Module: xrot()
2019-03-23 04:13:18 +00:00
//
2019-07-11 01:52:33 +00:00
// Usage: As Module
2021-06-27 03:59:33 +00:00
// xrot(a, [cp=]) ...
2021-03-09 21:47:26 +00:00
// Usage: As a function to rotate points
2021-06-27 03:59:33 +00:00
// rotated = xrot(a, p, [cp=]);
2021-03-09 21:47:26 +00:00
// Usage: As a function to return rotation matrix
2021-06-27 03:59:33 +00:00
// mat = xrot(a, [cp=]);
2021-02-26 21:07:11 +00:00
//
// Topics: Affine, Matrices, Transforms, Rotation
2021-10-02 04:01:24 +00:00
// See Also: rot(), yrot(), zrot()
2019-03-23 04:13:18 +00:00
//
2019-12-04 10:24:34 +00:00
// Description:
// Rotates around the X axis by the given number of degrees. If `cp` is given, rotations are performed around that centerpoint.
// * Called as a module, rotates all children.
// * Called as a function with a `p` argument containing a point, returns the rotated point.
// * Called as a function with a `p` argument containing a list of points, returns the list of rotated points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the rotated patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the rotated VNF.
// * Called as a function without a `p` argument, and `planar` is true, returns the affine2d rotational matrix.
// * Called as a function without a `p` argument, and `planar` is false, returns the affine3d rotational matrix.
//
2019-03-23 04:13:18 +00:00
// Arguments:
2018-12-10 20:11:34 +00:00
// a = angle to rotate by in degrees.
2021-03-09 21:47:26 +00:00
// p = If called as a function, this contains data to rotate: a point, list of points, bezier patch or VNF.
2021-02-26 21:07:11 +00:00
// ---
// cp = centerpoint to rotate around. Default: [0,0,0]
2019-03-23 04:13:18 +00:00
//
2017-08-30 00:00:16 +00:00
// Example:
2019-03-23 04:13:18 +00:00
// #cylinder(h=50, r=10, center=true);
// xrot(90) cylinder(h=50, r=10, center=true);
2021-02-26 21:07:11 +00:00
module xrot ( a = 0 , p , cp )
2019-03-23 04:13:18 +00:00
{
2021-02-26 21:07:11 +00:00
assert ( is_undef ( p ) , "Module form `xrot()` does not accept p= argument." ) ;
2020-05-30 02:04:34 +00:00
if ( a = = 0 ) {
children ( ) ; // May be slightly faster?
} else if ( ! is_undef ( cp ) ) {
translate ( cp ) rotate ( [ a , 0 , 0 ] ) translate ( - cp ) children ( ) ;
} else {
rotate ( [ a , 0 , 0 ] ) children ( ) ;
}
2018-12-10 20:11:34 +00:00
}
2017-08-30 00:00:16 +00:00
2021-10-24 14:57:17 +00:00
function xrot ( a = 0 , p = _NO_ARG , cp ) = rot ( [ a , 0 , 0 ] , cp = cp , p = p ) ;
2017-08-30 00:00:16 +00:00
2019-07-11 01:52:33 +00:00
// Function&Module: yrot()
2019-03-23 04:13:18 +00:00
//
2019-07-11 01:52:33 +00:00
// Usage: As Module
2021-06-27 03:59:33 +00:00
// yrot(a, [cp=]) ...
2019-07-11 01:52:33 +00:00
// Usage: Rotate Points
2021-06-27 03:59:33 +00:00
// rotated = yrot(a, p, [cp=]);
2019-07-11 01:52:33 +00:00
// Usage: Get Rotation Matrix
2021-06-27 03:59:33 +00:00
// mat = yrot(a, [cp=]);
2021-02-26 21:07:11 +00:00
//
// Topics: Affine, Matrices, Transforms, Rotation
2021-10-02 04:01:24 +00:00
// See Also: rot(), xrot(), zrot()
2019-03-23 04:13:18 +00:00
//
2019-12-04 10:24:34 +00:00
// Description:
// Rotates around the Y axis by the given number of degrees. If `cp` is given, rotations are performed around that centerpoint.
// * Called as a module, rotates all children.
// * Called as a function with a `p` argument containing a point, returns the rotated point.
// * Called as a function with a `p` argument containing a list of points, returns the list of rotated points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the rotated patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the rotated VNF.
// * Called as a function without a `p` argument, and `planar` is true, returns the affine2d rotational matrix.
// * Called as a function without a `p` argument, and `planar` is false, returns the affine3d rotational matrix.
//
2019-03-23 04:13:18 +00:00
// Arguments:
2018-12-10 20:11:34 +00:00
// a = angle to rotate by in degrees.
2021-03-09 21:47:26 +00:00
// p = If called as a function, this contains data to rotate: a point, list of points, bezier patch or VNF.
2021-02-26 21:07:11 +00:00
// ---
// cp = centerpoint to rotate around. Default: [0,0,0]
2019-03-23 04:13:18 +00:00
//
2017-08-30 00:00:16 +00:00
// Example:
2019-03-23 04:13:18 +00:00
// #cylinder(h=50, r=10, center=true);
// yrot(90) cylinder(h=50, r=10, center=true);
2021-02-26 21:07:11 +00:00
module yrot ( a = 0 , p , cp )
2019-03-23 04:13:18 +00:00
{
2021-02-26 21:07:11 +00:00
assert ( is_undef ( p ) , "Module form `yrot()` does not accept p= argument." ) ;
2020-05-30 02:04:34 +00:00
if ( a = = 0 ) {
children ( ) ; // May be slightly faster?
} else if ( ! is_undef ( cp ) ) {
translate ( cp ) rotate ( [ 0 , a , 0 ] ) translate ( - cp ) children ( ) ;
} else {
rotate ( [ 0 , a , 0 ] ) children ( ) ;
}
2018-12-10 20:11:34 +00:00
}
2017-08-30 00:00:16 +00:00
2021-10-24 14:57:17 +00:00
function yrot ( a = 0 , p = _NO_ARG , cp ) = rot ( [ 0 , a , 0 ] , cp = cp , p = p ) ;
2017-08-30 00:00:16 +00:00
2019-07-11 01:52:33 +00:00
// Function&Module: zrot()
2019-03-23 04:13:18 +00:00
//
2019-07-11 01:52:33 +00:00
// Usage: As Module
2021-06-27 03:59:33 +00:00
// zrot(a, [cp=]) ...
2021-03-09 21:47:26 +00:00
// Usage: As Function to rotate points
2021-06-27 03:59:33 +00:00
// rotated = zrot(a, p, [cp=]);
2021-03-09 21:47:26 +00:00
// Usage: As Function to return rotation matrix
2021-06-27 03:59:33 +00:00
// mat = zrot(a, [cp=]);
2021-02-26 21:07:11 +00:00
//
// Topics: Affine, Matrices, Transforms, Rotation
2021-10-02 04:01:24 +00:00
// See Also: rot(), xrot(), yrot()
2019-03-23 04:13:18 +00:00
//
2019-12-04 10:24:34 +00:00
// Description:
// Rotates around the Z axis by the given number of degrees. If `cp` is given, rotations are performed around that centerpoint.
// * Called as a module, rotates all children.
// * Called as a function with a `p` argument containing a point, returns the rotated point.
// * Called as a function with a `p` argument containing a list of points, returns the list of rotated points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the rotated patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the rotated VNF.
// * Called as a function without a `p` argument, and `planar` is true, returns the affine2d rotational matrix.
// * Called as a function without a `p` argument, and `planar` is false, returns the affine3d rotational matrix.
//
2019-03-23 04:13:18 +00:00
// Arguments:
2018-12-10 20:11:34 +00:00
// a = angle to rotate by in degrees.
2021-03-09 21:47:26 +00:00
// p = If called as a function, this contains data to rotate: a point, list of points, bezier patch or VNF.
2021-02-26 21:07:11 +00:00
// ---
// cp = centerpoint to rotate around. Default: [0,0,0]
2019-03-23 04:13:18 +00:00
//
2017-08-30 00:00:16 +00:00
// Example:
2019-03-23 04:13:18 +00:00
// #cube(size=[60,20,40], center=true);
// zrot(90) cube(size=[60,20,40], center=true);
2021-02-26 21:07:11 +00:00
module zrot ( a = 0 , p , cp )
2019-03-23 04:13:18 +00:00
{
2021-02-26 21:07:11 +00:00
assert ( is_undef ( p ) , "Module form `zrot()` does not accept p= argument." ) ;
2020-05-30 02:04:34 +00:00
if ( a = = 0 ) {
children ( ) ; // May be slightly faster?
} else if ( ! is_undef ( cp ) ) {
translate ( cp ) rotate ( a ) translate ( - cp ) children ( ) ;
} else {
rotate ( a ) children ( ) ;
}
2018-12-10 20:11:34 +00:00
}
2021-10-24 14:57:17 +00:00
function zrot ( a = 0 , p = _NO_ARG , cp ) = rot ( a , cp = cp , p = p ) ;
2017-08-30 00:00:16 +00:00
2021-09-06 22:07:03 +00:00
2019-03-23 04:13:18 +00:00
//////////////////////////////////////////////////////////////////////
2021-09-15 20:30:04 +00:00
// Section: Scaling
2019-03-23 04:13:18 +00:00
//////////////////////////////////////////////////////////////////////
2017-08-30 00:00:16 +00:00
2019-05-27 01:14:26 +00:00
// Function&Module: scale()
// Usage: As Module
2021-02-26 21:07:11 +00:00
// scale(SCALAR) ...
// scale([X,Y,Z]) ...
2019-05-27 01:14:26 +00:00
// Usage: Scale Points
2021-06-27 03:59:33 +00:00
// pts = scale(v, p, [cp=]);
2019-05-27 01:14:26 +00:00
// Usage: Get Scaling Matrix
2021-06-27 03:59:33 +00:00
// mat = scale(v, [cp=]);
2021-02-26 21:07:11 +00:00
// Topics: Affine, Matrices, Transforms, Scaling
2021-10-02 04:01:24 +00:00
// See Also: xscale(), yscale(), zscale()
2019-05-27 01:14:26 +00:00
// Description:
2019-12-04 10:24:34 +00:00
// Scales by the [X,Y,Z] scaling factors given in `v`. If `v` is given as a scalar number, all axes are scaled uniformly by that amount.
// * Called as the built-in module, scales all children.
// * Called as a function with a point in the `p` argument, returns the scaled point.
// * Called as a function with a list of points in the `p` argument, returns the list of scaled points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the scaled patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the scaled VNF.
// * Called as a function without a `p` argument, and a 2D list of scaling factors in `v`, returns an affine2d scaling matrix.
// * Called as a function without a `p` argument, and a 3D list of scaling factors in `v`, returns an affine3d scaling matrix.
2019-05-27 01:14:26 +00:00
// Arguments:
2019-12-04 10:24:34 +00:00
// v = Either a numeric uniform scaling factor, or a list of [X,Y,Z] scaling factors. Default: 1
2019-05-27 01:14:26 +00:00
// p = If called as a function, the point or list of points to scale.
2021-02-26 21:07:11 +00:00
// ---
// cp = If given, centers the scaling on the point `cp`.
2019-05-27 01:14:26 +00:00
// Example(NORENDER):
2019-06-12 05:26:09 +00:00
// pt1 = scale(3, p=[3,1,4]); // Returns: [9,3,12]
// pt2 = scale([2,3,4], p=[3,1,4]); // Returns: [6,3,16]
2019-05-27 01:14:26 +00:00
// pt3 = scale([2,3,4], p=[[1,2,3],[4,5,6]]); // Returns: [[2,6,12], [8,15,24]]
// mat2d = scale([2,3]); // Returns: [[2,0,0],[0,3,0],[0,0,1]]
// mat3d = scale([2,3,4]); // Returns: [[2,0,0,0],[0,3,0,0],[0,0,4,0],[0,0,0,1]]
2019-07-11 01:52:33 +00:00
// Example(2D):
// path = circle(d=50,$fn=12);
2019-12-04 10:24:34 +00:00
// #stroke(path,closed=true);
// stroke(scale([1.5,3],p=path),closed=true);
2021-10-24 14:57:17 +00:00
function scale ( v = 1 , p = _NO_ARG , cp = [ 0 , 0 , 0 ] ) =
assert ( is_num ( v ) || is_vector ( v ) , "Invalid scale" )
assert ( p = = _NO_ARG || is_list ( p ) , "Invalid point list" )
2021-02-26 21:07:11 +00:00
assert ( is_vector ( cp ) )
2021-10-11 01:40:22 +00:00
let (
v = is_num ( v ) ? [ v , v , v ] : v ,
2021-12-28 22:05:37 +00:00
m = cp = = [ 0 , 0 , 0 ]
? affine3d_scale ( v )
: affine3d_translate ( point3d ( cp ) )
* affine3d_scale ( v )
* affine3d_translate ( point3d ( - cp ) )
2021-10-11 01:40:22 +00:00
)
2021-10-24 14:57:17 +00:00
p = = _NO_ARG ? m : apply ( m , p ) ;
2019-05-27 01:14:26 +00:00
2019-07-11 01:52:33 +00:00
// Function&Module: xscale()
2019-03-23 04:13:18 +00:00
//
2019-12-04 10:24:34 +00:00
//
2019-07-11 01:52:33 +00:00
// Usage: As Module
2021-06-27 03:59:33 +00:00
// xscale(x, [cp=]) ...
2019-07-11 01:52:33 +00:00
// Usage: Scale Points
2021-06-27 03:59:33 +00:00
// scaled = xscale(x, p, [cp=]);
2019-12-04 10:24:34 +00:00
// Usage: Get Affine Matrix
2021-06-27 03:59:33 +00:00
// mat = xscale(x, [cp=], [planar=]);
2021-02-26 21:07:11 +00:00
//
// Topics: Affine, Matrices, Transforms, Scaling
2021-10-02 04:01:24 +00:00
// See Also: scale(), yscale(), zscale()
2019-07-11 01:52:33 +00:00
//
// Description:
2019-12-04 10:24:34 +00:00
// Scales along the X axis by the scaling factor `x`.
// * Called as the built-in module, scales all children.
// * Called as a function with a point in the `p` argument, returns the scaled point.
// * Called as a function with a list of points in the `p` argument, returns the list of scaled points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the scaled patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the scaled VNF.
// * Called as a function without a `p` argument, and a 2D list of scaling factors in `v`, returns an affine2d scaling matrix.
// * Called as a function without a `p` argument, and a 3D list of scaling factors in `v`, returns an affine3d scaling matrix.
2019-03-23 04:13:18 +00:00
//
// Arguments:
2019-07-11 01:52:33 +00:00
// x = Factor to scale by, along the X axis.
2020-12-01 05:09:00 +00:00
// p = A point, path, bezier patch, or VNF to scale, when called as a function.
2021-02-26 21:07:11 +00:00
// ---
// cp = If given as a point, centers the scaling on the point `cp`. If given as a scalar, centers scaling on the point `[cp,0,0]`
2019-07-11 01:52:33 +00:00
// planar = If true, and `p` is not given, then the matrix returned is an affine2d matrix instead of an affine3d matrix.
2019-03-23 04:13:18 +00:00
//
2019-07-11 01:52:33 +00:00
// Example: As Module
2019-03-23 04:13:18 +00:00
// xscale(3) sphere(r=10);
2019-07-11 01:52:33 +00:00
//
// Example(2D): Scaling Points
// path = circle(d=50,$fn=12);
2019-12-04 10:48:02 +00:00
// #stroke(path,closed=true);
// stroke(xscale(2,p=path),closed=true);
2021-02-26 21:07:11 +00:00
module xscale ( x = 1 , p , cp = 0 , planar ) {
assert ( is_undef ( p ) , "Module form `xscale()` does not accept p= argument." ) ;
assert ( is_undef ( planar ) , "Module form `xscale()` does not accept planar= argument." ) ;
2020-12-01 05:09:00 +00:00
cp = is_num ( cp ) ? [ cp , 0 , 0 ] : cp ;
if ( cp = = [ 0 , 0 , 0 ] ) {
scale ( [ x , 1 , 1 ] ) children ( ) ;
} else {
translate ( cp ) scale ( [ x , 1 , 1 ] ) translate ( - cp ) children ( ) ;
}
}
2019-03-23 04:13:18 +00:00
2021-10-24 14:57:17 +00:00
function xscale ( x = 1 , p = _NO_ARG , cp = 0 , planar = false ) =
2021-02-26 21:07:11 +00:00
assert ( is_finite ( x ) )
2021-10-24 14:57:17 +00:00
assert ( p = = _NO_ARG || is_list ( p ) )
2021-02-26 21:07:11 +00:00
assert ( is_finite ( cp ) || is_vector ( cp ) )
assert ( is_bool ( planar ) )
2020-12-01 05:09:00 +00:00
let ( cp = is_num ( cp ) ? [ cp , 0 , 0 ] : cp )
( planar || ( ! is_undef ( p ) && len ( p ) = = 2 ) )
? scale ( [ x , 1 ] , cp = cp , p = p )
: scale ( [ x , 1 , 1 ] , cp = cp , p = p ) ;
2019-03-23 04:13:18 +00:00
2019-07-11 01:52:33 +00:00
// Function&Module: yscale()
2019-03-23 04:13:18 +00:00
//
2019-12-04 10:24:34 +00:00
// Usage: As Module
2021-06-27 03:59:33 +00:00
// yscale(y, [cp=]) ...
2019-12-04 10:24:34 +00:00
// Usage: Scale Points
2021-06-27 03:59:33 +00:00
// scaled = yscale(y, p, [cp=]);
2019-12-04 10:24:34 +00:00
// Usage: Get Affine Matrix
2021-06-27 03:59:33 +00:00
// mat = yscale(y, [cp=], [planar=]);
2021-02-26 21:07:11 +00:00
//
// Topics: Affine, Matrices, Transforms, Scaling
2021-10-02 04:01:24 +00:00
// See Also: scale(), xscale(), zscale()
2019-12-04 10:24:34 +00:00
//
// Description:
// Scales along the Y axis by the scaling factor `y`.
// * Called as the built-in module, scales all children.
// * Called as a function with a point in the `p` argument, returns the scaled point.
// * Called as a function with a list of points in the `p` argument, returns the list of scaled points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the scaled patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the scaled VNF.
// * Called as a function without a `p` argument, and a 2D list of scaling factors in `v`, returns an affine2d scaling matrix.
// * Called as a function without a `p` argument, and a 3D list of scaling factors in `v`, returns an affine3d scaling matrix.
2019-03-23 04:13:18 +00:00
//
// Arguments:
2019-07-11 01:52:33 +00:00
// y = Factor to scale by, along the Y axis.
2020-12-01 05:09:00 +00:00
// p = A point, path, bezier patch, or VNF to scale, when called as a function.
2021-02-26 21:07:11 +00:00
// ---
// cp = If given as a point, centers the scaling on the point `cp`. If given as a scalar, centers scaling on the point `[0,cp,0]`
2019-07-11 01:52:33 +00:00
// planar = If true, and `p` is not given, then the matrix returned is an affine2d matrix instead of an affine3d matrix.
2019-03-23 04:13:18 +00:00
//
2019-07-11 01:52:33 +00:00
// Example: As Module
2019-03-23 04:13:18 +00:00
// yscale(3) sphere(r=10);
2019-07-11 01:52:33 +00:00
//
// Example(2D): Scaling Points
// path = circle(d=50,$fn=12);
2019-12-04 10:48:02 +00:00
// #stroke(path,closed=true);
// stroke(yscale(2,p=path),closed=true);
2021-02-26 21:07:11 +00:00
module yscale ( y = 1 , p , cp = 0 , planar ) {
assert ( is_undef ( p ) , "Module form `yscale()` does not accept p= argument." ) ;
assert ( is_undef ( planar ) , "Module form `yscale()` does not accept planar= argument." ) ;
2020-12-01 05:09:00 +00:00
cp = is_num ( cp ) ? [ 0 , cp , 0 ] : cp ;
if ( cp = = [ 0 , 0 , 0 ] ) {
scale ( [ 1 , y , 1 ] ) children ( ) ;
} else {
translate ( cp ) scale ( [ 1 , y , 1 ] ) translate ( - cp ) children ( ) ;
}
}
2019-07-11 01:52:33 +00:00
2021-10-24 14:57:17 +00:00
function yscale ( y = 1 , p = _NO_ARG , cp = 0 , planar = false ) =
2021-02-26 21:07:11 +00:00
assert ( is_finite ( y ) )
2021-10-24 14:57:17 +00:00
assert ( p = = _NO_ARG || is_list ( p ) )
2021-02-26 21:07:11 +00:00
assert ( is_finite ( cp ) || is_vector ( cp ) )
assert ( is_bool ( planar ) )
2020-12-01 05:09:00 +00:00
let ( cp = is_num ( cp ) ? [ 0 , cp , 0 ] : cp )
( planar || ( ! is_undef ( p ) && len ( p ) = = 2 ) )
2021-06-10 01:29:29 +00:00
? scale ( [ 1 , y ] , cp = cp , p = p )
: scale ( [ 1 , y , 1 ] , cp = cp , p = p ) ;
2019-03-23 04:13:18 +00:00
2019-07-11 01:52:33 +00:00
// Function&Module: zscale()
2019-03-23 04:13:18 +00:00
//
2019-12-04 10:24:34 +00:00
// Usage: As Module
2021-06-27 03:59:33 +00:00
// zscale(z, [cp=]) ...
2019-12-04 10:24:34 +00:00
// Usage: Scale Points
2021-06-27 03:59:33 +00:00
// scaled = zscale(z, p, [cp=]);
2019-12-04 10:24:34 +00:00
// Usage: Get Affine Matrix
2021-06-27 03:59:33 +00:00
// mat = zscale(z, [cp=]);
2021-02-26 21:07:11 +00:00
//
// Topics: Affine, Matrices, Transforms, Scaling
2021-10-02 04:01:24 +00:00
// See Also: scale(), xscale(), yscale()
2019-12-04 10:24:34 +00:00
//
// Description:
// Scales along the Z axis by the scaling factor `z`.
// * Called as the built-in module, scales all children.
// * Called as a function with a point in the `p` argument, returns the scaled point.
// * Called as a function with a list of points in the `p` argument, returns the list of scaled points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the scaled patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the scaled VNF.
// * Called as a function without a `p` argument, and a 2D list of scaling factors in `v`, returns an affine2d scaling matrix.
// * Called as a function without a `p` argument, and a 3D list of scaling factors in `v`, returns an affine3d scaling matrix.
2019-03-23 04:13:18 +00:00
//
// Arguments:
2019-07-11 01:52:33 +00:00
// z = Factor to scale by, along the Z axis.
2020-12-01 05:09:00 +00:00
// p = A point, path, bezier patch, or VNF to scale, when called as a function.
2021-02-26 21:07:11 +00:00
// ---
// cp = If given as a point, centers the scaling on the point `cp`. If given as a scalar, centers scaling on the point `[0,0,cp]`
2019-03-23 04:13:18 +00:00
//
2019-07-11 01:52:33 +00:00
// Example: As Module
2019-03-23 04:13:18 +00:00
// zscale(3) sphere(r=10);
2019-07-11 01:52:33 +00:00
//
// Example: Scaling Points
2020-04-26 11:29:21 +00:00
// path = xrot(90,p=path3d(circle(d=50,$fn=12)));
2021-10-07 01:16:39 +00:00
// #stroke(path,closed=true);
// stroke(zscale(2,path),closed=true);
2021-02-26 21:07:11 +00:00
module zscale ( z = 1 , p , cp = 0 ) {
assert ( is_undef ( p ) , "Module form `zscale()` does not accept p= argument." ) ;
2020-12-01 05:09:00 +00:00
cp = is_num ( cp ) ? [ 0 , 0 , cp ] : cp ;
if ( cp = = [ 0 , 0 , 0 ] ) {
scale ( [ 1 , 1 , z ] ) children ( ) ;
} else {
translate ( cp ) scale ( [ 1 , 1 , z ] ) translate ( - cp ) children ( ) ;
}
}
2019-07-11 01:52:33 +00:00
2021-10-24 14:57:17 +00:00
function zscale ( z = 1 , p = _NO_ARG , cp = 0 ) =
2021-02-26 21:07:11 +00:00
assert ( is_finite ( z ) )
assert ( is_undef ( p ) || is_list ( p ) )
assert ( is_finite ( cp ) || is_vector ( cp ) )
2020-12-01 05:09:00 +00:00
let ( cp = is_num ( cp ) ? [ 0 , 0 , cp ] : cp )
scale ( [ 1 , 1 , z ] , cp = cp , p = p ) ;
2019-03-23 04:13:18 +00:00
2021-09-06 14:48:37 +00:00
//////////////////////////////////////////////////////////////////////
// Section: Reflection (Mirroring)
//////////////////////////////////////////////////////////////////////
2019-12-04 10:24:34 +00:00
// Function&Module: mirror()
// Usage: As Module
// mirror(v) ...
// Usage: As Function
// pt = mirror(v, p);
// Usage: Get Reflection/Mirror Matrix
// mat = mirror(v);
2021-02-26 21:07:11 +00:00
// Topics: Affine, Matrices, Transforms, Reflection, Mirroring
2021-10-02 04:01:24 +00:00
// See Also: xflip(), yflip(), zflip()
2019-03-23 04:13:18 +00:00
// Description:
2019-12-04 10:24:34 +00:00
// Mirrors/reflects across the plane or line whose normal vector is given in `v`.
// * Called as the built-in module, mirrors all children across the line/plane.
// * Called as a function with a point in the `p` argument, returns the point mirrored across the line/plane.
// * Called as a function with a list of points in the `p` argument, returns the list of points, with each one mirrored across the line/plane.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the mirrored patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the mirrored VNF.
// * Called as a function without a `p` argument, and with a 2D normal vector `v`, returns the affine2d 3x3 mirror matrix.
// * Called as a function without a `p` argument, and with a 3D normal vector `v`, returns the affine3d 4x4 mirror matrix.
// Arguments:
// v = The normal vector of the line or plane to mirror across.
// p = If called as a function, the point or list of points to scale.
// Example:
// n = [1,0,0];
// module obj() right(20) rotate([0,15,-15]) cube([40,30,20]);
// obj();
// mirror(n) obj();
// rot(a=atan2(n.y,n.x),from=UP,to=n) {
// color("red") anchor_arrow(s=20, flag=false);
// color("#7777") cube([75,75,0.1], center=true);
// }
// Example:
// n = [1,1,0];
// module obj() right(20) rotate([0,15,-15]) cube([40,30,20]);
// obj();
// mirror(n) obj();
// rot(a=atan2(n.y,n.x),from=UP,to=n) {
// color("red") anchor_arrow(s=20, flag=false);
// color("#7777") cube([75,75,0.1], center=true);
// }
// Example:
// n = [1,1,1];
// module obj() right(20) rotate([0,15,-15]) cube([40,30,20]);
// obj();
// mirror(n) obj();
// rot(a=atan2(n.y,n.x),from=UP,to=n) {
// color("red") anchor_arrow(s=20, flag=false);
// color("#7777") cube([75,75,0.1], center=true);
// }
// Example(2D):
// n = [0,1];
// path = rot(30, p=square([50,30]));
// color("gray") rot(from=[0,1],to=n) stroke([[-60,0],[60,0]]);
// color("red") stroke([[0,0],10*n],endcap2="arrow2");
// #stroke(path,closed=true);
// stroke(mirror(n, p=path),closed=true);
// Example(2D):
// n = [1,1];
// path = rot(30, p=square([50,30]));
// color("gray") rot(from=[0,1],to=n) stroke([[-60,0],[60,0]]);
// color("red") stroke([[0,0],10*n],endcap2="arrow2");
// #stroke(path,closed=true);
// stroke(mirror(n, p=path),closed=true);
2021-10-24 14:57:17 +00:00
function mirror ( v , p = _NO_ARG ) =
2020-05-30 02:04:34 +00:00
assert ( is_vector ( v ) )
2021-10-24 14:57:17 +00:00
assert ( p = = _NO_ARG || is_list ( p ) , "Invalid pointlist" )
2020-05-30 02:04:34 +00:00
let ( m = len ( v ) = = 2 ? affine2d_mirror ( v ) : affine3d_mirror ( v ) )
2021-10-24 14:57:17 +00:00
p = = _NO_ARG ? m : apply ( m , p ) ;
2019-12-04 10:24:34 +00:00
// Function&Module: xflip()
2019-03-23 04:13:18 +00:00
//
2019-12-04 10:24:34 +00:00
// Usage: As Module
2021-06-27 03:59:33 +00:00
// xflip([x]) ...
2019-12-04 10:24:34 +00:00
// Usage: As Function
2021-06-27 03:59:33 +00:00
// pt = xflip(p, [x]);
2019-12-04 10:24:34 +00:00
// Usage: Get Affine Matrix
2021-06-27 03:59:33 +00:00
// pt = xflip([x], [planar=]);
2021-02-26 21:07:11 +00:00
//
// Topics: Affine, Matrices, Transforms, Reflection, Mirroring
2021-10-02 04:01:24 +00:00
// See Also: mirror(), yflip(), zflip()
2019-12-04 10:24:34 +00:00
//
// Description:
// Mirrors/reflects across the origin [0,0,0], along the X axis. If `x` is given, reflects across [x,0,0] instead.
// * Called as the built-in module, mirrors all children across the line/plane.
// * Called as a function with a point in the `p` argument, returns the point mirrored across the line/plane.
// * Called as a function with a list of points in the `p` argument, returns the list of points, with each one mirrored across the line/plane.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the mirrored patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the mirrored VNF.
2021-02-15 08:28:36 +00:00
// * Called as a function without a `p` argument, and `planar=true`, returns the affine2d 3x3 mirror matrix.
// * Called as a function without a `p` argument, and `planar=false`, returns the affine3d 4x4 mirror matrix.
2019-03-23 04:13:18 +00:00
//
// Arguments:
2019-06-12 05:12:49 +00:00
// x = The X coordinate of the plane of reflection. Default: 0
2021-02-15 08:28:36 +00:00
// p = If given, the point, path, patch, or VNF to mirror. Function use only.
2021-02-26 21:07:11 +00:00
// ---
// planar = If true, and p is not given, returns a 2D affine transformation matrix. Function use only. Default: False
2019-03-23 04:13:18 +00:00
//
// Example:
// xflip() yrot(90) cylinder(d1=10, d2=0, h=20);
// color("blue", 0.25) cube([0.01,15,15], center=true);
// color("red", 0.333) yrot(90) cylinder(d1=10, d2=0, h=20);
//
// Example:
2019-06-12 05:12:49 +00:00
// xflip(x=-5) yrot(90) cylinder(d1=10, d2=0, h=20);
2019-03-23 04:13:18 +00:00
// color("blue", 0.25) left(5) cube([0.01,15,15], center=true);
// color("red", 0.333) yrot(90) cylinder(d1=10, d2=0, h=20);
2021-02-26 21:07:11 +00:00
module xflip ( p , x = 0 , planar ) {
assert ( is_undef ( p ) , "Module form `zflip()` does not accept p= argument." ) ;
assert ( is_undef ( planar ) , "Module form `zflip()` does not accept planar= argument." ) ;
translate ( [ x , 0 , 0 ] )
mirror ( [ 1 , 0 , 0 ] )
translate ( [ - x , 0 , 0 ] ) children ( ) ;
}
2019-03-23 04:13:18 +00:00
2021-10-24 14:57:17 +00:00
function xflip ( p = _NO_ARG , x = 0 , planar = false ) =
2021-02-26 21:07:11 +00:00
assert ( is_finite ( x ) )
assert ( is_bool ( planar ) )
2021-10-24 14:57:17 +00:00
assert ( p = = _NO_ARG || is_list ( p ) , "Invalid point list" )
2021-02-15 08:28:36 +00:00
let (
v = RIGHT ,
n = planar ? point2d ( v ) : v
)
x = = 0 ? mirror ( n , p = p ) :
let (
cp = x * n ,
2021-10-11 01:40:22 +00:00
m = move ( cp ) * mirror ( n ) * move ( - cp )
)
2021-10-24 14:57:17 +00:00
p = = _NO_ARG ? m : apply ( m , p ) ;
2019-03-23 04:13:18 +00:00
2019-12-04 10:24:34 +00:00
2020-01-07 00:31:16 +00:00
// Function&Module: yflip()
2019-03-23 04:13:18 +00:00
//
2019-12-04 10:24:34 +00:00
// Usage: As Module
2021-06-27 03:59:33 +00:00
// yflip([y]) ...
2019-12-04 10:24:34 +00:00
// Usage: As Function
2021-06-27 03:59:33 +00:00
// pt = yflip(p, [y]);
2019-12-04 10:24:34 +00:00
// Usage: Get Affine Matrix
2021-06-27 03:59:33 +00:00
// pt = yflip([y], [planar=]);
2021-02-26 21:07:11 +00:00
//
// Topics: Affine, Matrices, Transforms, Reflection, Mirroring
2021-10-02 04:01:24 +00:00
// See Also: mirror(), xflip(), zflip()
2019-12-04 10:24:34 +00:00
//
// Description:
// Mirrors/reflects across the origin [0,0,0], along the Y axis. If `y` is given, reflects across [0,y,0] instead.
// * Called as the built-in module, mirrors all children across the line/plane.
// * Called as a function with a point in the `p` argument, returns the point mirrored across the line/plane.
// * Called as a function with a list of points in the `p` argument, returns the list of points, with each one mirrored across the line/plane.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the mirrored patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the mirrored VNF.
2021-02-15 08:28:36 +00:00
// * Called as a function without a `p` argument, and `planar=true`, returns the affine2d 3x3 mirror matrix.
// * Called as a function without a `p` argument, and `planar=false`, returns the affine3d 4x4 mirror matrix.
2019-03-23 04:13:18 +00:00
//
// Arguments:
2021-02-26 21:07:11 +00:00
// p = If given, the point, path, patch, or VNF to mirror. Function use only.
2019-06-12 05:12:49 +00:00
// y = The Y coordinate of the plane of reflection. Default: 0
2021-02-26 21:07:11 +00:00
// ---
2021-02-15 08:28:36 +00:00
// planar = If true, and p is not given, returns a 2D affine transformation matrix. Function use only. Default: False
2019-03-23 04:13:18 +00:00
//
// Example:
// yflip() xrot(90) cylinder(d1=10, d2=0, h=20);
// color("blue", 0.25) cube([15,0.01,15], center=true);
// color("red", 0.333) xrot(90) cylinder(d1=10, d2=0, h=20);
//
2018-11-27 03:55:18 +00:00
// Example:
2019-06-12 05:12:49 +00:00
// yflip(y=5) xrot(90) cylinder(d1=10, d2=0, h=20);
2019-03-23 04:13:18 +00:00
// color("blue", 0.25) back(5) cube([15,0.01,15], center=true);
// color("red", 0.333) xrot(90) cylinder(d1=10, d2=0, h=20);
2021-02-26 21:07:11 +00:00
module yflip ( p , y = 0 , planar ) {
assert ( is_undef ( p ) , "Module form `yflip()` does not accept p= argument." ) ;
assert ( is_undef ( planar ) , "Module form `yflip()` does not accept planar= argument." ) ;
translate ( [ 0 , y , 0 ] )
mirror ( [ 0 , 1 , 0 ] )
translate ( [ 0 , - y , 0 ] ) children ( ) ;
}
2019-03-23 04:13:18 +00:00
2021-10-24 14:57:17 +00:00
function yflip ( p = _NO_ARG , y = 0 , planar = false ) =
2021-02-26 21:07:11 +00:00
assert ( is_finite ( y ) )
assert ( is_bool ( planar ) )
2021-10-24 14:57:17 +00:00
assert ( p = = _NO_ARG || is_list ( p ) , "Invalid point list" )
2021-02-15 08:28:36 +00:00
let (
v = BACK ,
n = planar ? point2d ( v ) : v
)
y = = 0 ? mirror ( n , p = p ) :
let (
cp = y * n ,
2021-10-11 01:40:22 +00:00
m = move ( cp ) * mirror ( n ) * move ( - cp )
)
2021-10-24 14:57:17 +00:00
p = = _NO_ARG ? m : apply ( m , p ) ;
2019-12-04 10:24:34 +00:00
// Function&Module: zflip()
2019-03-23 04:13:18 +00:00
//
2019-12-04 10:24:34 +00:00
// Usage: As Module
2021-06-27 03:59:33 +00:00
// zflip([z]) ...
2019-12-04 10:24:34 +00:00
// Usage: As Function
2021-06-27 03:59:33 +00:00
// pt = zflip(p, [z]);
2019-12-04 10:24:34 +00:00
// Usage: Get Affine Matrix
2021-06-27 03:59:33 +00:00
// pt = zflip([z]);
2019-12-04 10:24:34 +00:00
//
2021-02-26 21:07:11 +00:00
// Topics: Affine, Matrices, Transforms, Reflection, Mirroring
2021-10-02 04:01:24 +00:00
// See Also: mirror(), xflip(), yflip()
2021-02-26 21:07:11 +00:00
//
2019-12-04 10:24:34 +00:00
// Description:
// Mirrors/reflects across the origin [0,0,0], along the Z axis. If `z` is given, reflects across [0,0,z] instead.
// * Called as the built-in module, mirrors all children across the line/plane.
// * Called as a function with a point in the `p` argument, returns the point mirrored across the line/plane.
// * Called as a function with a list of points in the `p` argument, returns the list of points, with each one mirrored across the line/plane.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the mirrored patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the mirrored VNF.
2021-02-15 08:28:36 +00:00
// * Called as a function without a `p` argument, returns the affine3d 4x4 mirror matrix.
2019-03-23 04:13:18 +00:00
//
// Arguments:
2021-02-15 08:28:36 +00:00
// p = If given, the point, path, patch, or VNF to mirror. Function use only.
2021-02-26 21:07:11 +00:00
// z = The Z coordinate of the plane of reflection. Default: 0
2019-03-23 04:13:18 +00:00
//
// Example:
// zflip() cylinder(d1=10, d2=0, h=20);
// color("blue", 0.25) cube([15,15,0.01], center=true);
// color("red", 0.333) cylinder(d1=10, d2=0, h=20);
//
// Example:
2019-06-12 05:12:49 +00:00
// zflip(z=-5) cylinder(d1=10, d2=0, h=20);
2019-03-23 04:13:18 +00:00
// color("blue", 0.25) down(5) cube([15,15,0.01], center=true);
// color("red", 0.333) cylinder(d1=10, d2=0, h=20);
2021-02-26 21:07:11 +00:00
module zflip ( p , z = 0 ) {
assert ( is_undef ( p ) , "Module form `zflip()` does not accept p= argument." ) ;
translate ( [ 0 , 0 , z ] )
mirror ( [ 0 , 0 , 1 ] )
translate ( [ 0 , 0 , - z ] ) children ( ) ;
}
2017-08-30 00:00:16 +00:00
2021-10-24 14:57:17 +00:00
function zflip ( p = _NO_ARG , z = 0 ) =
2021-02-26 21:07:11 +00:00
assert ( is_finite ( z ) )
2021-10-24 14:57:17 +00:00
assert ( p = = _NO_ARG || is_list ( p ) , "Invalid point list" )
2020-05-30 02:04:34 +00:00
z = = 0 ? mirror ( [ 0 , 0 , 1 ] , p = p ) :
2021-10-11 01:40:22 +00:00
let ( m = up ( z ) * mirror ( UP ) * down ( z ) )
2021-10-24 14:57:17 +00:00
p = = _NO_ARG ? m : apply ( m , p ) ;
2019-12-04 10:24:34 +00:00
2017-08-30 00:00:16 +00:00
2019-03-23 04:13:18 +00:00
//////////////////////////////////////////////////////////////////////
2021-09-06 22:07:03 +00:00
// Section: Other Transformations
2019-03-23 04:13:18 +00:00
//////////////////////////////////////////////////////////////////////
2017-08-30 00:00:16 +00:00
2021-09-06 22:07:03 +00:00
// Function&Module: frame_map()
// Usage: As module
// frame_map(v1, v2, v3, [reverse=]) { ... }
// Usage: As function to remap points
// transformed = frame_map(v1, v2, v3, p=points, [reverse=]);
// Usage: As function to return a transformation matrix:
// map = frame_map(v1, v2, v3, [reverse=]);
// map = frame_map(x=VECTOR1, y=VECTOR2, [reverse=]);
// map = frame_map(x=VECTOR1, z=VECTOR2, [reverse=]);
// map = frame_map(y=VECTOR1, z=VECTOR2, [reverse=]);
// Topics: Affine, Matrices, Transforms, Rotation
2021-10-02 04:01:24 +00:00
// See Also: rot(), xrot(), yrot(), zrot()
2021-09-06 22:07:03 +00:00
// Description:
// Maps one coordinate frame to another. You must specify two or
// three of `x`, `y`, and `z`. The specified axes are mapped to the vectors you supplied, so if you
// specify x=[1,1] then the x axis will be mapped to the line y=x. If you
// give two inputs, the third vector is mapped to the appropriate normal to maintain a right hand
// coordinate system. If the vectors you give are orthogonal the result will be a rotation and the
// `reverse` parameter will supply the inverse map, which enables you to map two arbitrary
// coordinate systems to each other by using the canonical coordinate system as an intermediary.
// You cannot use the `reverse` option with non-orthogonal inputs. Note that only the direction
// of the specified vectors matters: the transformation will not apply scaling, though it can
// skew if your provide non-orthogonal axes.
// Arguments:
// x = Destination 3D vector for x axis.
// y = Destination 3D vector for y axis.
// z = Destination 3D vector for z axis.
2021-10-07 01:16:39 +00:00
// p = If given, the point, path, patch, or VNF to operate on. Function use only.
2021-09-06 22:07:03 +00:00
// reverse = reverse direction of the map for orthogonal inputs. Default: false
// Example: Remap axes after linear extrusion
// frame_map(x=[0,1,0], y=[0,0,1]) linear_extrude(height=10) square(3);
// Example: This map is just a rotation around the z axis
2021-10-07 01:16:39 +00:00
// mat = frame_map(x=[1,1,0], y=[-1,1,0]);
// multmatrix(mat) frame_ref();
2021-09-06 22:07:03 +00:00
// Example: This map is not a rotation because x and y aren't orthogonal
2021-10-07 01:16:39 +00:00
// frame_map(x=[1,0,0], y=[1,1,0]) cube(10);
// Example: This sends [1,1,0] to [0,1,1] and [-1,1,0] to [0,-1,1]. (Original directions shown in light shade, final directions shown dark.)
2021-09-06 22:07:03 +00:00
// mat = frame_map(x=[0,1,1], y=[0,-1,1]) * frame_map(x=[1,1,0], y=[-1,1,0],reverse=true);
2021-10-07 01:16:39 +00:00
// color("purple",alpha=.2) stroke([[0,0,0],10*[1,1,0]]);
// color("green",alpha=.2) stroke([[0,0,0],10*[-1,1,0]]);
// multmatrix(mat) {
// color("purple") stroke([[0,0,0],10*[1,1,0]]);
// color("green") stroke([[0,0,0],10*[-1,1,0]]);
// }
2021-10-24 14:57:17 +00:00
function frame_map ( x , y , z , p = _NO_ARG , reverse = false ) =
p ! = _NO_ARG
2021-09-06 22:07:03 +00:00
? apply ( frame_map ( x , y , z , reverse = reverse ) , p )
:
assert ( num_defined ( [ x , y , z ] ) >= 2 , "Must define at least two inputs" )
let (
xvalid = is_undef ( x ) || ( is_vector ( x ) && len ( x ) = = 3 ) ,
yvalid = is_undef ( y ) || ( is_vector ( y ) && len ( y ) = = 3 ) ,
zvalid = is_undef ( z ) || ( is_vector ( z ) && len ( z ) = = 3 )
)
assert ( xvalid , "Input x must be a length 3 vector" )
assert ( yvalid , "Input y must be a length 3 vector" )
assert ( zvalid , "Input z must be a length 3 vector" )
let (
x = is_undef ( x ) ? undef : unit ( x , RIGHT ) ,
y = is_undef ( y ) ? undef : unit ( y , BACK ) ,
z = is_undef ( z ) ? undef : unit ( z , UP ) ,
map = is_undef ( x ) ? [ cross ( y , z ) , y , z ] :
is_undef ( y ) ? [ x , cross ( z , x ) , z ] :
is_undef ( z ) ? [ x , y , cross ( x , y ) ] :
[ x , y , z ]
)
reverse ? (
let (
ocheck = (
approx ( map [ 0 ] * map [ 1 ] , 0 ) &&
approx ( map [ 0 ] * map [ 2 ] , 0 ) &&
approx ( map [ 1 ] * map [ 2 ] , 0 )
)
)
assert ( ocheck , "Inputs must be orthogonal when reverse==true" )
[ for ( r = map ) [ for ( c = r ) c , 0 ] , [ 0 , 0 , 0 , 1 ] ]
) : [ for ( r = transpose ( map ) ) [ for ( c = r ) c , 0 ] , [ 0 , 0 , 0 , 1 ] ] ;
module frame_map ( x , y , z , p , reverse = false )
{
assert ( is_undef ( p ) , "Module form `frame_map()` does not accept p= argument." ) ;
multmatrix ( frame_map ( x , y , z , reverse = reverse ) )
children ( ) ;
}
2017-08-30 00:00:16 +00:00
2019-12-20 05:03:13 +00:00
// Function&Module: skew()
2019-12-04 10:24:34 +00:00
// Usage: As Module
2021-06-27 03:59:33 +00:00
// skew([sxy=], [sxz=], [syx=], [syz=], [szx=], [szy=]) ...
2019-12-04 10:24:34 +00:00
// Usage: As Function
2021-06-27 03:59:33 +00:00
// pts = skew(p, [sxy=], [sxz=], [syx=], [syz=], [szx=], [szy=]);
2019-12-04 10:24:34 +00:00
// Usage: Get Affine Matrix
2021-06-27 03:59:33 +00:00
// mat = skew([sxy=], [sxz=], [syx=], [syz=], [szx=], [szy=], [planar=]);
2021-02-26 21:07:11 +00:00
// Topics: Affine, Matrices, Transforms, Skewing
//
2019-12-04 10:24:34 +00:00
// Description:
2019-12-20 05:03:13 +00:00
// Skews geometry by the given skew factors.
2019-12-04 10:24:34 +00:00
// * Called as the built-in module, skews all children.
// * Called as a function with a point in the `p` argument, returns the skewed point.
// * Called as a function with a list of points in the `p` argument, returns the list of skewed points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the skewed patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the skewed VNF.
// * Called as a function without a `p` argument, and with `planar` true, returns the affine2d 3x3 skew matrix.
// * Called as a function without a `p` argument, and with `planar` false, returns the affine3d 4x4 skew matrix.
2019-12-20 05:03:13 +00:00
// Each skew factor is a multiplier. For example, if `sxy=2`, then it will skew along the X axis by 2x the value of the Y axis.
2019-03-23 04:13:18 +00:00
// Arguments:
2021-02-26 21:07:11 +00:00
// p = If given, the point, path, patch, or VNF to skew. Function use only.
// ---
2019-12-20 05:03:13 +00:00
// sxy = Skew factor multiplier for skewing along the X axis as you get farther from the Y axis. Default: 0
// sxz = Skew factor multiplier for skewing along the X axis as you get farther from the Z axis. Default: 0
// syx = Skew factor multiplier for skewing along the Y axis as you get farther from the X axis. Default: 0
// syz = Skew factor multiplier for skewing along the Y axis as you get farther from the Z axis. Default: 0
// szx = Skew factor multiplier for skewing along the Z axis as you get farther from the X axis. Default: 0
// szy = Skew factor multiplier for skewing along the Z axis as you get farther from the Y axis. Default: 0
// Example(2D): Skew along the X axis in 2D.
// skew(sxy=0.5) square(40, center=true);
// Example(2D): Skew along the Y axis in 2D.
// skew(syx=0.5) square(40, center=true);
// Example: Skew along the X axis in 3D as a factor of Y coordinate.
// skew(sxy=0.5) cube(40, center=true);
// Example: Skew along the X axis in 3D as a factor of Z coordinate.
// skew(sxz=0.5) cube(40, center=true);
// Example: Skew along the Y axis in 3D as a factor of X coordinate.
// skew(syx=0.5) cube(40, center=true);
// Example: Skew along the Y axis in 3D as a factor of Z coordinate.
// skew(syz=0.5) cube(40, center=true);
// Example: Skew along the Z axis in 3D as a factor of X coordinate.
// skew(szx=0.5) cube(40, center=true);
// Example: Skew along the Z axis in 3D as a factor of Y coordinate.
// skew(szy=0.75) cube(40, center=true);
2021-02-20 03:56:43 +00:00
// Example(FlatSpin,VPD=275): Skew Along Multiple Axes.
2019-12-20 05:03:13 +00:00
// skew(sxy=0.5, syx=0.3, szy=0.75) cube(40, center=true);
// Example(2D): Calling as a 2D Function
// pts = skew(p=square(40,center=true), sxy=0.5);
// color("yellow") stroke(pts, closed=true);
2020-03-25 01:31:22 +00:00
// color("blue") move_copies(pts) circle(d=3, $fn=8);
2021-02-20 03:56:43 +00:00
// Example(FlatSpin,VPD=175): Calling as a 3D Function
2019-12-20 05:03:13 +00:00
// pts = skew(p=path3d(square(40,center=true)), szx=0.5, szy=0.3);
2021-10-07 01:16:39 +00:00
// stroke(pts,closed=true,dots=true,dots_color="blue");
2021-02-26 21:07:11 +00:00
module skew ( p , sxy = 0 , sxz = 0 , syx = 0 , syz = 0 , szx = 0 , szy = 0 )
2019-12-20 05:03:13 +00:00
{
2021-02-26 21:07:11 +00:00
assert ( is_undef ( p ) , "Module form `skew()` does not accept p= argument." )
2020-05-30 02:04:34 +00:00
multmatrix (
affine3d_skew ( sxy = sxy , sxz = sxz , syx = syx , syz = syz , szx = szx , szy = szy )
) children ( ) ;
2019-12-20 05:03:13 +00:00
}
2019-03-23 04:13:18 +00:00
2021-10-24 14:57:17 +00:00
function skew ( p = _NO_ARG , sxy = 0 , sxz = 0 , syx = 0 , syz = 0 , szx = 0 , szy = 0 , planar = false ) =
2021-02-26 21:07:11 +00:00
assert ( is_finite ( sxy ) )
assert ( is_finite ( sxz ) )
assert ( is_finite ( syx ) )
assert ( is_finite ( syz ) )
assert ( is_finite ( szx ) )
assert ( is_finite ( szy ) )
assert ( is_bool ( planar ) )
2020-05-30 02:04:34 +00:00
let (
planar = planar || ( is_list ( p ) && is_num ( p . x ) && len ( p ) = = 2 ) ,
m = planar ? [
[ 1 , sxy , 0 ] ,
[ syx , 1 , 0 ] ,
[ 0 , 0 , 1 ]
] : affine3d_skew ( sxy = sxy , sxz = sxz , syx = syx , syz = syz , szx = szx , szy = szy )
)
2021-10-24 14:57:17 +00:00
p = = _NO_ARG ? m : apply ( m , p ) ;
2020-05-30 02:04:34 +00:00
2021-10-01 04:30:28 +00:00
// Section: Applying transformation matrices to
/// Internal Function: is_2d_transform()
/// Usage:
/// x = is_2d_transform(t);
/// Topics: Affine, Matrices, Transforms, Type Checking
/// See Also: is_affine(), is_matrix()
/// Description:
/// Checks if the input is a 3D transform that does not act on the z coordinate, except possibly
/// for a simple scaling of z. Note that an input which is only a zscale returns false.
/// Arguments:
/// t = The transformation matrix to check.
/// Example:
/// b = is_2d_transform(zrot(45)); // Returns: true
/// b = is_2d_transform(yrot(45)); // Returns: false
/// b = is_2d_transform(xrot(45)); // Returns: false
/// b = is_2d_transform(move([10,20,0])); // Returns: true
/// b = is_2d_transform(move([10,20,30])); // Returns: false
/// b = is_2d_transform(scale([2,3,4])); // Returns: true
function is_2d_transform ( t ) = // z-parameters are zero, except we allow t[2][2]!=1 so scale() works
t [ 2 ] [ 0 ] = = 0 && t [ 2 ] [ 1 ] = = 0 && t [ 2 ] [ 3 ] = = 0 && t [ 0 ] [ 2 ] = = 0 && t [ 1 ] [ 2 ] = = 0 &&
( t [ 2 ] [ 2 ] = = 1 || ! ( t [ 0 ] [ 0 ] = = 1 && t [ 0 ] [ 1 ] = = 0 && t [ 1 ] [ 0 ] = = 0 && t [ 1 ] [ 1 ] = = 1 ) ) ; // But rule out zscale()
// Function: apply()
// Usage:
// pts = apply(transform, points);
// Topics: Affine, Matrices, Transforms
// Description:
2021-12-28 22:05:37 +00:00
// Applies the specified transformation matrix `transform` to a point, point list, bezier patch or VNF.
// When `points` contains 2D or 3D points the transform matrix may be a 4x4 affine matrix or a 3x4 matrix---
// the 4x4 matrix with its final row removed. When the data is 2D the matrix must not operate on the Z axis,
// except possibly by scaling it. When points contains 2D data you can also supply the transform as
// a 3x3 affine transformation matrix or the corresponding 2x3 matrix with the last row deleted.
2021-10-01 04:30:28 +00:00
// .
2021-12-28 22:07:28 +00:00
// Any other combination of matrices will produce an error, including acting with a 2D matrix (3x3) on 3D data.
// The output of apply is always the same dimension as the input---projections are not supported.
2021-10-01 04:30:28 +00:00
// Arguments:
2021-12-28 22:05:37 +00:00
// transform = The 2D (3x3 or 2x3) or 3D (4x4 or 3x4) transformation matrix to apply.
// points = The point, point list, bezier patch, or VNF to apply the transformation to.
2021-10-01 04:30:28 +00:00
// Example(3D):
// path1 = path3d(circle(r=40));
// tmat = xrot(45);
// path2 = apply(tmat, path1);
// #stroke(path1,closed=true);
// stroke(path2,closed=true);
// Example(2D):
// path1 = circle(r=40);
// tmat = translate([10,5]);
// path2 = apply(tmat, path1);
// #stroke(path1,closed=true);
// stroke(path2,closed=true);
// Example(2D):
// path1 = circle(r=40);
// tmat = rot(30) * back(15) * scale([1.5,0.5,1]);
// path2 = apply(tmat, path1);
// #stroke(path1,closed=true);
// stroke(path2,closed=true);
function apply ( transform , points ) =
2021-10-11 01:40:22 +00:00
points = = [ ] ? [ ]
2021-10-11 02:46:00 +00:00
: is_vector ( points ) ? _apply ( transform , [ points ] ) [ 0 ] // point
2021-10-11 01:40:22 +00:00
: is_vnf ( points ) ? // vnf
let (
2021-10-11 02:46:00 +00:00
newvnf = [ _apply ( transform , points [ 0 ] ) , points [ 1 ] ] ,
2021-10-11 01:40:22 +00:00
reverse = ( len ( transform ) = = len ( transform [ 0 ] ) ) && determinant ( transform ) < 0
)
reverse ? vnf_reverse_faces ( newvnf ) : newvnf
: is_list ( points ) && is_list ( points [ 0 ] ) && is_vector ( points [ 0 ] [ 0 ] ) // bezier patch
2021-10-11 02:46:00 +00:00
? [ for ( x = points ) _apply ( transform , x ) ]
: _apply ( transform , points ) ;
2021-12-28 22:05:37 +00:00
2021-10-11 02:46:00 +00:00
function _apply ( transform , points ) =
assert ( is_matrix ( transform ) , "Invalid transformation matrix" )
assert ( is_matrix ( points ) , "Invalid points list" )
2021-10-01 04:30:28 +00:00
let (
tdim = len ( transform [ 0 ] ) - 1 ,
2021-12-28 22:05:37 +00:00
datadim = len ( points [ 0 ] )
)
assert ( len ( transform ) = = tdim || len ( transform ) - 1 = = tdim , "transform matrix height not compatible with width" )
assert ( datadim = = 2 || datadim = = 3 , "Data must be 2D or 3D" )
let (
2021-12-29 22:55:29 +00:00
scale = len ( transform ) = = tdim ? 1 : transform [ tdim ] [ tdim ] ,
2021-12-29 23:01:23 +00:00
matrix = [ for ( i = [ 0 : 1 : tdim ] ) [ for ( j = [ 0 : 1 : datadim - 1 ] ) transform [ j ] [ i ] ] ] / scale
2021-10-11 02:46:00 +00:00
)
2021-12-29 23:01:23 +00:00
tdim = = datadim ? [ for ( p = points ) concat ( p , 1 ) ] * matrix
: tdim = = 3 && datadim = = 2 ?
2021-12-28 22:05:37 +00:00
assert ( is_2d_transform ( transform ) , str ( "Transforms is 3D and acts on Z, but points are 2D" ) )
2021-10-11 02:46:00 +00:00
[ for ( p = points ) concat ( p , [ 0 , 1 ] ) ] * matrix
2021-12-29 23:01:23 +00:00
: assert ( false , str ( "Unsupported combination: " , len ( transform ) , "x" , len ( transform [ 0 ] ) , " transform (dimension " , tdim ,
2021-12-28 22:05:37 +00:00
"), data of dimension " , datadim ) ) ;
2021-10-01 04:30:28 +00:00
2020-05-30 02:04:34 +00:00
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap