2019-05-12 10:32:56 +00:00
//////////////////////////////////////////////////////////////////////
// LibFile: shapes2d.scad
// Common useful 2D shapes.
// To use, add the following lines to the beginning of your file:
// ```
// include <BOSL2/std.scad>
// ```
//////////////////////////////////////////////////////////////////////
// Section: 2D Drawing Helpers
// Module: stroke()
// Usage:
2019-12-04 10:20:05 +00:00
// stroke(path, [width], [closed], [endcaps], [endcap_width], [endcap_length], [endcap_extent], [trim]);
// stroke(path, [width], [closed], [endcap1], [endcap2], [endcap_width1], [endcap_width2], [endcap_length1], [endcap_length2], [endcap_extent1], [endcap_extent2], [trim1], [trim2]);
2019-05-12 10:32:56 +00:00
// Description:
2019-07-30 19:34:05 +00:00
// Draws a 2D line path with a given line thickness. Endcaps can be specified for each end individually.
2019-07-30 19:52:45 +00:00
// Figure(2D,Big): Endcap Types
2019-08-03 07:07:54 +00:00
// endcaps = [
// ["butt", "square", "round", "chisel", "tail", "tail2"],
// ["line", "cross", "dot", "diamond", "x", "arrow", "arrow2"]
// ];
// for (x=idx(endcaps), y=idx(endcaps[x])) {
// cap = endcaps[x][y];
// right(x*60-60+5) fwd(y*10+15) {
2019-07-30 19:34:05 +00:00
// right(28) color("black") text(text=cap, size=5, halign="left", valign="center");
2019-08-03 07:07:54 +00:00
// stroke([[0,0], [20,0]], width=3, endcap_width=3, endcap1=false, endcap2=cap);
2019-07-30 19:34:05 +00:00
// color("black") stroke([[0,0], [20,0]], width=0.25, endcaps=false);
// }
// }
2019-05-12 10:32:56 +00:00
// Arguments:
// path = The 2D path to draw along.
// width = The width of the line to draw.
2019-07-12 20:11:13 +00:00
// closed = If true, draw an additional line from the end of the path to the start.
2019-07-30 19:34:05 +00:00
// endcaps = Specifies the endcap type for both ends of the line. If a 2D path is given, use that to draw custom endcaps.
// endcap1 = Specifies the endcap type for the start of the line. If a 2D path is given, use that to draw a custom endcap.
// endcap2 = Specifies the endcap type for the end of the line. If a 2D path is given, use that to draw a custom endcap.
2019-08-03 07:07:54 +00:00
// endcap_width = Some endcap types are wider than the line. This specifies the size of endcaps, in multiples of the line width. Default: 3.5
// endcap_width1 = This specifies the size of starting endcap, in multiples of the line width. Default: 3.5
// endcap_width2 = This specifies the size of ending endcap, in multiples of the line width. Default: 3.5
// endcap_length = Length of endcaps, in multiples of the line width. Default: `endcap_width*0.5`
// endcap_length1 = Length of starting endcap, in multiples of the line width. Default: `endcap_width1*0.5`
// endcap_length2 = Length of ending endcap, in multiples of the line width. Default: `endcap_width2*0.5`
// endcap_extent = Extents length of endcaps, in multiples of the line width. Default: `endcap_width*0.5`
// endcap_extent1 = Extents length of starting endcap, in multiples of the line width. Default: `endcap_width1*0.5`
// endcap_extent2 = Extents length of ending endcap, in multiples of the line width. Default: `endcap_width2*0.5`
2019-07-30 19:34:05 +00:00
// trim = Trim the the start and end line segments by this much, to keep them from interfering with custom endcaps.
// trim1 = Trim the the starting line segment by this much, to keep it from interfering with a custom endcap.
// trim2 = Trim the the ending line segment by this much, to keep it from interfering with a custom endcap.
2019-07-30 20:00:13 +00:00
// Example(2D): Drawing a Path
2019-07-30 19:34:05 +00:00
// path = [[0,100], [100,100], [200,0], [100,-100], [100,0]];
2019-07-30 20:00:13 +00:00
// stroke(path, width=20);
// Example(2D): Closing a Path
2019-05-12 10:32:56 +00:00
// path = [[0,100], [100,100], [200,0], [100,-100], [100,0]];
2019-07-30 20:00:13 +00:00
// stroke(path, width=20, endcaps=true, closed=true);
// Example(2D): Fancy Arrow Endcaps
2019-05-12 10:32:56 +00:00
// path = [[0,100], [100,100], [200,0], [100,-100], [100,0]];
2019-07-30 20:00:13 +00:00
// stroke(path, width=10, endcaps="arrow2");
// Example(2D): Modified Fancy Arrow Endcaps
2019-05-12 10:32:56 +00:00
// path = [[0,100], [100,100], [200,0], [100,-100], [100,0]];
2019-08-03 07:07:54 +00:00
// stroke(path, width=10, endcaps="arrow2", endcap_width=6, endcap_length=3, endcap_extent=2);
2019-07-30 19:34:05 +00:00
// Example(2D): Mixed Endcaps
// path = [[0,100], [100,100], [200,0], [100,-100], [100,0]];
2019-07-30 20:00:13 +00:00
// stroke(path, width=10, endcap1="tail2", endcap2="arrow2");
2019-07-30 19:34:05 +00:00
// Example(2D): Custom Endcap Shapes
// path = [[0,100], [100,100], [200,0], [100,-100], [100,0]];
// arrow = [[0,0], [2,-3], [0.5,-2.3], [2,-4], [0.5,-3.5], [-0.5,-3.5], [-2,-4], [-0.5,-2.3], [-2,-3]];
// stroke(path, width=10, trim=3.5, endcaps=arrow);
2019-08-03 07:07:54 +00:00
module stroke (
path , width = 1 , closed = false ,
endcaps , endcap1 , endcap2 ,
trim , trim1 , trim2 ,
endcap_width , endcap_width1 , endcap_width2 ,
endcap_length , endcap_length1 , endcap_length2 ,
endcap_extent , endcap_extent1 , endcap_extent2
) {
function _endcap_shape ( cap , linewidth , w , l , l2 ) = (
let ( sq2 = sqrt ( 2 ) , l3 = l - l2 )
2019-07-30 19:34:05 +00:00
( cap = = "round" || cap = = true ) ? circle ( d = 1 , $fn = max ( 8 , segs ( w / 2 ) ) ) :
cap = = "chisel" ? [ [ - 0.5 , 0 ] , [ 0 , 0.5 ] , [ 0.5 , 0 ] , [ 0 , - 0.5 ] ] :
cap = = "square" ? [ [ - 0.5 , - 0.5 ] , [ - 0.5 , 0.5 ] , [ 0.5 , 0.5 ] , [ 0.5 , - 0.5 ] ] :
2019-08-03 07:07:54 +00:00
cap = = "diamond" ? [ [ 0 , w / 2 ] , [ w / 2 , 0 ] , [ 0 , - w / 2 ] , [ - w / 2 , 0 ] ] :
2019-07-30 19:34:05 +00:00
cap = = "dot" ? circle ( d = 3 , $fn = max ( 12 , segs ( w * 3 / 2 ) ) ) :
cap = = "x" ? [ for ( a = [ 0 : 90 : 270 ] ) each rot ( a , p = [ [ w + sq2 / 2 , w - sq2 / 2 ] / 2 , [ w - sq2 / 2 , w + sq2 / 2 ] / 2 , [ 0 , sq2 / 2 ] ] ) ] :
cap = = "cross" ? [ for ( a = [ 0 : 90 : 270 ] ) each rot ( a , p = [ [ 1 , w ] / 2 , [ - 1 , w ] / 2 , [ - 1 , 1 ] / 2 ] ) ] :
cap = = "line" ? [ [ w / 2 , 0.5 ] , [ w / 2 , - 0.5 ] , [ - w / 2 , - 0.5 ] , [ - w / 2 , 0.5 ] ] :
2019-08-03 07:07:54 +00:00
cap = = "arrow" ? [ [ 0 , 0 ] , [ w / 2 , - l2 ] , [ w / 2 , - l2 - l ] , [ 0 , - l ] , [ - w / 2 , - l2 - l ] , [ - w / 2 , - l2 ] ] :
cap = = "arrow2" ? [ [ 0 , 0 ] , [ w / 2 , - l2 - l ] , [ 0 , - l ] , [ - w / 2 , - l2 - l ] ] :
cap = = "tail" ? [ [ 0 , 0 ] , [ w / 2 , l2 ] , [ w / 2 , l2 - l ] , [ 0 , - l ] , [ - w / 2 , l2 - l ] , [ - w / 2 , l2 ] ] :
cap = = "tail2" ? [ [ w / 2 , 0 ] , [ w / 2 , - l ] , [ 1 / 2 , - l - l2 ] , [ - 1 / 2 , - l - l2 ] , [ - w / 2 , - l ] , [ - w / 2 , 0 ] ] :
2019-07-30 19:34:05 +00:00
is_path ( cap ) ? cap :
[ ]
) * width ;
endcap1 = first_defined ( [ endcap1 , endcaps , "round" ] ) ;
endcap2 = first_defined ( [ endcap2 , endcaps , "round" ] ) ;
2019-08-03 07:07:54 +00:00
endcap_width1 = first_defined ( [ endcap_width1 , endcap_width , 3.5 ] ) ;
endcap_width2 = first_defined ( [ endcap_width2 , endcap_width , 3.5 ] ) ;
endcap_length1 = first_defined ( [ endcap_length1 , endcap_length , endcap_width1 * 0.5 ] ) ;
endcap_length2 = first_defined ( [ endcap_length2 , endcap_length , endcap_width2 * 0.5 ] ) ;
endcap_extent1 = first_defined ( [ endcap_extent1 , endcap_extent , endcap_width1 * 0.5 ] ) ;
endcap_extent2 = first_defined ( [ endcap_extent2 , endcap_extent , endcap_width2 * 0.5 ] ) ;
endcap_shape1 = _endcap_shape ( endcap1 , width , endcap_width1 , endcap_length1 , endcap_extent1 ) ;
endcap_shape2 = _endcap_shape ( endcap2 , width , endcap_width2 , endcap_length2 , endcap_extent2 ) ;
2019-07-30 19:34:05 +00:00
2019-05-12 10:32:56 +00:00
$fn = quantup ( segs ( width / 2 ) , 4 ) ;
2019-07-12 20:11:13 +00:00
path = closed ? concat ( path , [ path [ 0 ] ] ) : path ;
2019-07-10 20:03:17 +00:00
assert ( is_list ( path ) && is_vector ( path [ 0 ] ) && len ( path [ 0 ] ) = = 2 , "path must be a 2D list of points." ) ;
2019-07-30 19:34:05 +00:00
2019-05-12 10:32:56 +00:00
segments = pair ( path ) ;
segpairs = pair ( segments ) ;
2019-07-30 01:19:19 +00:00
start_seg = segments [ 0 ] ;
start_vec = start_seg [ 0 ] - start_seg [ 1 ] ;
end_seg = select ( segments , - 1 ) ;
end_vec = end_seg [ 1 ] - end_seg [ 0 ] ;
2019-07-30 19:34:05 +00:00
trim1 = width * first_defined ( [
trim1 , trim ,
2019-08-03 07:07:54 +00:00
( endcap1 = = "arrow" ) ? endcap_length1 - 0.01 :
( endcap1 = = "arrow2" ) ? endcap_length1 * 3 / 4 :
2019-07-30 19:34:05 +00:00
0
] ) ;
trim2 = width * first_defined ( [
trim2 , trim ,
2019-08-03 07:07:54 +00:00
( endcap2 = = "arrow" ) ? endcap_length2 - 0.01 :
( endcap2 = = "arrow2" ) ? endcap_length2 * 3 / 4 :
2019-07-30 19:34:05 +00:00
0
] ) ;
2019-07-30 01:19:19 +00:00
if ( len ( segments ) = = 1 ) {
seglen = norm ( start_seg [ 1 ] - start_seg [ 0 ] ) ;
translate ( start_seg [ 0 ] - normalize ( start_vec ) * trim1 )
2019-07-30 19:34:05 +00:00
rot ( from = BACK , to = - start_vec )
square ( [ width , max ( 0.01 , seglen - trim1 - trim2 ) ] , anchor = FRONT ) ;
2019-07-30 01:19:19 +00:00
} else {
2019-07-30 19:34:05 +00:00
seglen1 = max ( 0.01 , norm ( start_vec ) - trim1 ) ;
2019-07-30 01:19:19 +00:00
translate ( start_seg [ 1 ] )
rot ( from = BACK , to = start_vec )
square ( [ width , seglen1 ] , anchor = FRONT ) ;
2019-07-30 19:34:05 +00:00
seglen2 = max ( 0.01 , norm ( end_vec ) - trim2 ) ;
2019-07-30 01:19:19 +00:00
translate ( end_seg [ 0 ] )
rot ( from = BACK , to = end_vec )
square ( [ width , seglen2 ] , anchor = FRONT ) ;
}
2019-05-12 10:32:56 +00:00
// Line segments
2019-07-30 01:19:19 +00:00
for ( seg = slice ( segments , 1 , - 2 ) ) {
2019-05-12 10:32:56 +00:00
delt = seg [ 1 ] - seg [ 0 ] ;
translate ( seg [ 0 ] )
rot ( from = BACK , to = delt )
2019-07-30 01:19:19 +00:00
square ( [ width , norm ( delt ) ] , anchor = FRONT ) ;
2019-05-12 10:32:56 +00:00
}
// Joints
for ( segpair = segpairs ) {
seg1 = segpair [ 0 ] ;
seg2 = segpair [ 1 ] ;
delt1 = seg1 [ 1 ] - seg1 [ 0 ] ;
delt2 = seg2 [ 1 ] - seg2 [ 0 ] ;
hull ( ) {
translate ( seg1 [ 1 ] )
rot ( from = BACK , to = delt1 )
circle ( d = width ) ;
translate ( seg2 [ 0 ] )
rot ( from = BACK , to = delt2 )
circle ( d = width ) ;
}
}
2019-07-30 01:19:19 +00:00
// Endcap1
translate ( start_seg [ 0 ] ) {
rot ( from = BACK , to = start_vec ) {
2019-07-30 19:34:05 +00:00
polygon ( endcap_shape1 ) ;
2019-07-30 01:19:19 +00:00
}
}
// Endcap2
translate ( end_seg [ 1 ] ) {
rot ( from = BACK , to = end_vec ) {
2019-07-30 19:34:05 +00:00
polygon ( endcap_shape2 ) ;
2019-07-30 01:19:19 +00:00
}
2019-05-12 10:32:56 +00:00
}
}
2019-05-29 04:23:59 +00:00
// Function&Module: arc()
// Usage: 2D arc from 0º to `angle` degrees.
// arc(N, r|d, angle);
// Usage: 2D arc from START to END degrees.
// arc(N, r|d, angle=[START,END])
// Usage: 2D arc from `start` to `start+angle` degrees.
// arc(N, r|d, start, angle)
// Usage: 2D circle segment by `width` and `thickness`, starting and ending on the X axis.
// arc(N, width, thickness)
2019-07-14 19:33:17 +00:00
// Usage: Shortest 2D or 3D arc around centerpoint `cp`, starting at P0 and ending on the vector pointing from `cp` to `P1`.
2019-05-29 04:23:59 +00:00
// arc(N, cp, points=[P0,P1])
// Usage: 2D or 3D arc, starting at `P0`, passing through `P1` and ending at `P2`.
// arc(N, points=[P0,P1,P2])
// Description:
// If called as a function, returns a 2D or 3D path forming an arc.
// If called as a module, creates a 2D arc polygon or pie slice shape.
// Arguments:
2019-05-29 23:27:35 +00:00
// N = Number of vertices to form the arc curve from.
2019-05-29 04:23:59 +00:00
// r = Radius of the arc.
// d = Diameter of the arc.
// angle = If a scalar, specifies the end angle in degrees. If a vector of two scalars, specifies start and end angles.
// cp = Centerpoint of arc.
// points = Points on the arc.
// width = If given with `thickness`, arc starts and ends on X axis, to make a circle segment.
// thickness = If given with `width`, arc starts and ends on X axis, to make a circle segment.
// start = Start angle of arc.
// wedge = If true, include centerpoint `cp` in output to form pie slice shape.
// Examples(2D):
2019-05-29 23:27:35 +00:00
// arc(N=4, r=30, angle=30, wedge=true);
2019-05-30 00:52:42 +00:00
// arc(r=30, angle=30, wedge=true);
// arc(d=60, angle=30, wedge=true);
// arc(d=60, angle=120);
// arc(d=60, angle=120, wedge=true);
// arc(r=30, angle=[75,135], wedge=true);
// arc(r=30, start=45, angle=75, wedge=true);
// arc(width=60, thickness=20);
// arc(cp=[-10,5], points=[[20,10],[0,35]], wedge=true);
// arc(points=[[30,-5],[20,10],[-10,20]], wedge=true);
// arc(points=[[5,30],[-10,-10],[30,5]], wedge=true);
2019-05-29 23:27:35 +00:00
// Example(2D):
2019-05-30 00:52:42 +00:00
// path = arc(points=[[5,30],[-10,-10],[30,5]], wedge=true);
2019-07-12 20:11:13 +00:00
// stroke(closed=true, path);
2019-05-29 04:23:59 +00:00
// Example(FlatSpin):
2019-05-30 00:52:42 +00:00
// path = arc(points=[[0,30,0],[0,0,30],[30,0,0]]);
2019-05-29 04:23:59 +00:00
// trace_polyline(path, showpts=true, color="cyan");
function arc ( N , r , angle , d , cp , points , width , thickness , start , wedge = false ) =
2019-07-14 19:33:17 +00:00
// First try for 2D arc specified by angles
2019-05-29 04:23:59 +00:00
is_def ( width ) && is_def ( thickness ) ? (
arc ( N , points = [ [ width / 2 , 0 ] , [ 0 , thickness ] , [ - width / 2 , 0 ] ] , wedge = wedge )
) : is_def ( angle ) ? (
let (
parmok = is_undef ( points ) && is_undef ( width ) && is_undef ( thickness ) &&
( ( is_vector ( angle ) && len ( angle ) = = 2 && is_undef ( start ) ) || is_num ( angle ) )
)
assert ( parmok , "Invalid parameters in arc" )
let (
2019-05-29 23:27:35 +00:00
cp = is_def ( cp ) ? cp : [ 0 , 0 ] ,
2019-05-29 04:23:59 +00:00
start = is_def ( start ) ? start : is_vector ( angle ) ? angle [ 0 ] : 0 ,
angle = is_vector ( angle ) ? angle [ 1 ] - angle [ 0 ] : angle ,
2019-08-03 09:18:40 +00:00
r = get_radius ( r = r , d = d ) ,
2019-07-01 01:09:43 +00:00
N = max ( 3 , is_undef ( N ) ? ceil ( segs ( r ) * abs ( angle ) / 360 ) : N ) ,
2019-05-29 04:23:59 +00:00
arcpoints = [ for ( i = [ 0 : N - 1 ] ) let ( theta = start + i * angle / ( N - 1 ) ) r * [ cos ( theta ) , sin ( theta ) ] + cp ] ,
extra = wedge ? [ cp ] : [ ]
)
concat ( extra , arcpoints )
) :
assert ( is_list ( points ) , "Invalid parameters" )
2019-07-14 19:33:17 +00:00
// Arc is 3D, so transform points to 2D and make a recursive call, then remap back to 3D
2019-05-29 04:23:59 +00:00
len ( points [ 0 ] ) = = 3 ? (
let (
thirdpoint = is_def ( cp ) ? cp : points [ 2 ] ,
center2d = is_def ( cp ) ? project_plane ( cp , thirdpoint , points [ 0 ] , points [ 1 ] ) : undef ,
points2d = project_plane ( points , thirdpoint , points [ 0 ] , points [ 1 ] )
)
lift_plane ( arc ( N , cp = center2d , points = points2d , wedge = wedge ) , thirdpoint , points [ 0 ] , points [ 1 ] )
) : is_def ( cp ) ? (
// Arc defined by center plus two points, will have radius defined by center and points[0]
// and extent defined by direction of point[1] from the center
let (
angle = vector_angle ( points [ 0 ] , cp , points [ 1 ] ) ,
v1 = points [ 0 ] - cp ,
v2 = points [ 1 ] - cp ,
dir = sign ( det2 ( [ v1 , v2 ] ) ) , // z component of cross product
r = norm ( v1 )
)
assert ( dir ! = 0 , "Collinear inputs don't define a unique arc" )
arc ( N , cp = cp , r = r , start = atan2 ( v1 . y , v1 . x ) , angle = dir * angle , wedge = wedge )
) : (
// Final case is arc passing through three points, starting at point[0] and ending at point[3]
2019-09-02 22:15:24 +00:00
let ( col = collinear ( points [ 0 ] , points [ 1 ] , points [ 2 ] ) )
2019-05-29 04:23:59 +00:00
assert ( ! col , "Collinear inputs do not define an arc" )
let (
cp = line_intersection ( _normal_segment ( points [ 0 ] , points [ 1 ] ) , _normal_segment ( points [ 1 ] , points [ 2 ] ) ) ,
// select order to be counterclockwise
dir = det2 ( [ points [ 1 ] - points [ 0 ] , points [ 2 ] - points [ 1 ] ] ) > 0 ,
2019-07-14 19:30:46 +00:00
points = dir ? select ( points , [ 0 , 2 ] ) : select ( points , [ 2 , 0 ] ) ,
2019-05-29 04:23:59 +00:00
r = norm ( points [ 0 ] - cp ) ,
theta_start = atan2 ( points [ 0 ] . y - cp . y , points [ 0 ] . x - cp . x ) ,
theta_end = atan2 ( points [ 1 ] . y - cp . y , points [ 1 ] . x - cp . x ) ,
angle = posmod ( theta_end - theta_start , 360 ) ,
arcpts = arc ( N , cp = cp , r = r , start = theta_start , angle = angle , wedge = wedge )
)
dir ? arcpts : reverse ( arcpts )
) ;
2019-05-29 23:27:35 +00:00
module arc ( N , r , angle , d , cp , points , width , thickness , start , wedge = false )
{
path = arc ( N = N , r = r , angle = angle , d = d , cp = cp , points = points , width = width , thickness = thickness , start = start , wedge = wedge ) ;
polygon ( path ) ;
}
2019-05-29 04:23:59 +00:00
function _normal_segment ( p1 , p2 ) =
2019-07-14 19:30:46 +00:00
let ( center = ( p1 + p2 ) / 2 )
[ center , center + norm ( p1 - p2 ) / 2 * line_normal ( p1 , p2 ) ] ;
2019-05-29 04:23:59 +00:00
2020-01-06 05:36:27 +00:00
// Function: turtle()
2019-05-12 10:32:56 +00:00
// Usage:
2020-01-06 05:36:27 +00:00
// turtle(commands, [state], [return_state])
2019-05-12 10:32:56 +00:00
// Description:
2020-01-06 05:36:27 +00:00
// Use a sequence of turtle graphics commands to generate a path. The parameter `commands` is a list of
// turtle commands and optional parameters for each command. The turtle state has a position, movement direction,
// movement distance, and default turn angle. If you do not give `state` as input then the turtle starts at the
// origin, pointed along the positive x axis with a movement distance of 1. By default, `turtle` returns just
// the computed turtle path. If you set `full_state` to true then it instead returns the full turtle state.
// You can invoke `turtle` again with this full state to continue the turtle path where you left off.
//
// For the list below, `dist` is the current movement distance.
//
// Commands | Arguments | What it does
// ------------ | ------------------ | -------------------------------
// "move" | [dist] | Move turtle scale*dist units in the turtle direction. Default dist=1.
// "xmove" | [dist] | Move turtle scale*dist units in the x direction. Default dist=1.
// "ymove" | [dist] | Move turtle scale*dist units in the y direction. Default dist=1.
// "untilx" | xtarget | Move turtle in turtle direction until x==xtarget. Produces an error if xtarget is not reachable.
// "untily" | ytarget | Move turtle in turtle direction until y==ytarget. Produces an error if xtarget is not reachable.
// "jump" | point | Move the turtle to the specified point
// "xjump" | x | Move the turtle's x position to the specified value
// "yjump | y | Move the turtle's y position to the specified value
// "turn" | [angle] | Turn turtle direction by specified angle, or the turtle's default turn angle. The default angle starts at 90.
// "left" | [angle] | Same as "turn"
// "right" | [angle] | Same as "turn", -angle
// "angle" | angle | Set the default turn angle.
// "setdir" | dir | Set turtle direction. The parameter `dir` can be an angle or a vector.
// "length" | length | Change the turtle move distance to `length`
// "scale" | factor | Multiply turtle move distance by `factor`
// "addlength" | length | Add `length` to the turtle move distance
// "repeat" | count, commands | Repeats a list of commands `count` times.
// "arcleft" | radius, [angle] | Draw an arc from the current position toward the left at the specified radius and angle. The turtle turns by `angle`. A negative angle draws the arc to the right instead of the left, and leaves the turtle facing right. A negative radius draws the arc to the right but leaves the turtle facing left.
// "arcright" | radius, [angle] | Draw an arc from the current position toward the right at the specified radius and angle
// "arcleftto" | radius, angle | Draw an arc at the given radius turning toward the left until reaching the specified absolute angle.
// "arcrightto" | radius, angle | Draw an arc at the given radius turning toward the right until reaching the specified absolute angle.
// "arcsteps" | count | Specifies the number of segments to use for drawing arcs. If you set it to zero then the standard `$fn`, `$fa` and `$fs` variables define the number of segments.
//
2019-05-12 10:32:56 +00:00
// Arguments:
2020-01-06 05:36:27 +00:00
// commands = list of turtle commands
// state = starting turtle state (from previous call) or starting point. Default: start at the origin
// full_state = if true return the full turtle state for continuing the path in subsequent turtle calls. Default: false
// repeat = number of times to repeat the command list. Default: 1
//
// Example(2D): Simple rectangle
// path = turtle(["xmove",3, "ymove", "xmove",-3, "ymove",-1]);
// stroke(path,width=.1);
// Example(2D): Pentagon
// path=turtle(["angle",360/5,"move","turn","move","turn","move","turn","move"]);
// stroke(path,width=.1,closed=true);
// Example(2D): Pentagon using the repeat argument
// path=turtle(["move","turn",360/5],repeat=5);
// stroke(path,width=.1,closed=true);
// Example(2D): Pentagon using the repeat turtle command, setting the turn angle
// path=turtle(["angle",360/5,"repeat",5,["move","turn"]]);
// stroke(path,width=.1,closed=true);
// Example(2D): Pentagram
// path = turtle(["move","left",144], repeat=4);
// stroke(path,width=.05,closed=true);
// Example(2D): Sawtooth path
// path = turtle([
// "turn", 55,
// "untily", 2,
// "turn", -55-90,
// "untily", 0,
// "turn", 55+90,
// "untily", 2.5,
// "turn", -55-90,
// "untily", 0,
// "turn", 55+90,
// "untily", 3,
// "turn", -55-90,
// "untily", 0
// ]);
// stroke(path, width=.1);
// Example(2D): Simpler way to draw the sawtooth. The direction of the turtle is preserved when executing "yjump".
// path = turtle([
// "turn", 55,
// "untily", 2,
// "yjump", 0,
// "untily", 2.5,
// "yjump", 0,
// "untily", 3,
// "yjump", 0,
// ]);
// stroke(path, width=.1);
// Example(2DMed): square spiral
// path = turtle(["move","left","addlength",1],repeat=50);
// stroke(path,width=.2);
// Example(2DMed): pentagonal spiral
// path = turtle(["move","left",360/5,"addlength",1],repeat=50);
// stroke(path,width=.2);
// Example(2DMed): yet another spiral, without using `repeat`
// path = turtle(concat(["angle",71],flatten(replist(["move","left","addlength",1],50))));
// stroke(path,width=.2);
// Example(2DMed): The previous spiral grows linearly and eventually intersects itself. This one grows geometrically and does not.
// path = turtle(["move","left",71,"scale",1.05],repeat=50);
// stroke(path,width=.05);
// Example(2D): Koch Snowflake
// function koch_unit(depth) =
// depth==0 ? ["move"] :
// concat(
// koch_unit(depth-1),
// ["right"],
// koch_unit(depth-1),
// ["left","left"],
// koch_unit(depth-1),
// ["right"],
// koch_unit(depth-1)
// );
// koch=concat(["angle",60,"repeat",3],[concat(koch_unit(3),["left","left"])]);
// polygon(turtle(koch));
function turtle ( commands , state = [ [ [ 0 , 0 ] ] , [ 1 , 0 ] , 90 , 0 ] , full_state = false , repeat = 1 ) =
let ( state = is_vector ( state ) ? [ [ state ] , [ 1 , 0 ] , 90 , 0 ] : state )
repeat = = 1 ?
_turtle ( commands , state , full_state ) :
_turtle_repeat ( commands , state , full_state , repeat ) ;
function _turtle_repeat ( commands , state , full_state , repeat ) =
repeat = = 1 ?
_turtle ( commands , state , full_state ) :
_turtle_repeat ( commands , _turtle ( commands , state , true ) , full_state , repeat - 1 ) ;
function _turtle_command_len ( commands , index ) =
let ( one_or_two_arg = [ "arcleft" , "arcright" , "arcleftto" , "arcrightto" ] )
commands [ index ] = = "repeat" ? 3 : // Repeat command requires 2 args
// For these, the first arg is required, second arg is present if it is not a string
in_list ( commands [ index ] , one_or_two_arg ) && len ( commands ) > index + 2 && ! is_string ( commands [ index + 2 ] ) ? 3 :
is_string ( commands [ index + 1 ] ) ? 1 : // If 2nd item is a string it's must be a new command
2 ; // Otherwise we have command and arg
function _turtle ( commands , state , full_state , index = 0 ) =
index < len ( commands ) ?
_turtle ( commands ,
_turtle_command ( commands [ index ] , commands [ index + 1 ] , commands [ index + 2 ] , state , index ) ,
full_state ,
index + _turtle_command_len ( commands , index )
) :
( full_state ? state : state [ 0 ] ) ;
// Turtle state: state = [path, step_vector, default angle]
function _turtle_command ( command , parm , parm2 , state , index ) =
command = = "repeat" ?
assert ( is_num ( parm ) , str ( "\"repeat\" command requires a numeric repeat count at index " , index ) )
assert ( is_list ( parm2 ) , str ( "\"repeat\" command requires a command list parameter at index " , index ) )
_turtle_repeat ( parm2 , state , true , parm ) :
2019-05-29 23:27:35 +00:00
let (
2020-01-06 05:36:27 +00:00
path = 0 ,
step = 1 ,
angle = 2 ,
arcsteps = 3 ,
parm = ! is_string ( parm ) ? parm : undef ,
parm2 = ! is_string ( parm2 ) ? parm2 : undef ,
needvec = [ "jump" ] ,
neednum = [ "untilx" , "untily" , "xjump" , "yjump" , "angle" , "length" , "scale" , "addlength" ] ,
needeither = [ "setdir" ] ,
chvec = ! in_list ( command , needvec ) || is_vector ( parm ) ,
chnum = ! in_list ( command , neednum ) || is_num ( parm ) ,
vec_or_num = ! in_list ( command , needeither ) || ( is_num ( parm ) || is_vector ( parm ) ) ,
lastpt = select ( state [ path ] , - 1 )
)
assert ( chvec , str ( "\"" , command , "\" requires a vector parameter at index " , index ) )
assert ( chnum , str ( "\"" , command , "\" requires a numeric parameter at index " , index ) )
assert ( vec_or_num , str ( "\"" , command , "\" requires a vector or numeric parameter at index " , index ) )
command = = "move" ? list_set ( state , path , concat ( state [ path ] , [ default ( parm , 1 ) * state [ step ] + lastpt ] ) ) :
command = = "untilx" ? (
let (
int = line_intersection ( [ lastpt , lastpt + state [ step ] ] , [ [ parm , 0 ] , [ parm , 1 ] ] ) ,
xgood = sign ( state [ step ] . x ) = = sign ( int . x - lastpt . x )
)
assert ( xgood , str ( "\"untilx\" never reaches desired goal at index " , index ) )
list_set ( state , path , concat ( state [ path ] , [ int ] ) )
) :
command = = "untily" ? (
let (
int = line_intersection ( [ lastpt , lastpt + state [ step ] ] , [ [ 0 , parm ] , [ 1 , parm ] ] ) ,
ygood = is_def ( int ) && sign ( state [ step ] . y ) = = sign ( int . y - lastpt . y )
)
assert ( ygood , str ( "\"untily\" never reaches desired goal at index " , index ) )
list_set ( state , path , concat ( state [ path ] , [ int ] ) )
) :
command = = "xmove" ? list_set ( state , path , concat ( state [ path ] , [ default ( parm , 1 ) * norm ( state [ step ] ) * [ 1 , 0 ] + lastpt ] ) ) :
command = = "ymove" ? list_set ( state , path , concat ( state [ path ] , [ default ( parm , 1 ) * norm ( state [ step ] ) * [ 0 , 1 ] + lastpt ] ) ) :
command = = "jump" ? list_set ( state , path , concat ( state [ path ] , [ parm ] ) ) :
command = = "xjump" ? list_set ( state , path , concat ( state [ path ] , [ [ parm , lastpt . y ] ] ) ) :
command = = "yjump" ? list_set ( state , path , concat ( state [ path ] , [ [ lastpt . x , parm ] ] ) ) :
command = = "turn" || command = = "left" ? list_set ( state , step , rot ( default ( parm , state [ angle ] ) , p = state [ step ] , planar = true ) ) :
command = = "right" ? list_set ( state , step , rot ( - default ( parm , state [ angle ] ) , p = state [ step ] , planar = true ) ) :
command = = "angle" ? list_set ( state , angle , parm ) :
command = = "setdir" ? (
is_vector ( parm ) ?
list_set ( state , step , norm ( state [ step ] ) * normalize ( parm ) ) :
list_set ( state , step , norm ( state [ step ] ) * [ cos ( parm ) , sin ( parm ) ] )
) :
command = = "length" ? list_set ( state , step , parm * normalize ( state [ step ] ) ) :
command = = "scale" ? list_set ( state , step , parm * state [ step ] ) :
command = = "addlength" ? list_set ( state , step , state [ step ] + normalize ( state [ step ] ) * parm ) :
command = = "arcsteps" ? list_set ( state , arcsteps , parm ) :
command = = "arcleft" || command = = "arcright" ?
assert ( is_num ( parm ) , str ( "\"" , command , "\" command requires a numeric radius value at index " , index ) )
let (
myangle = default ( parm2 , state [ angle ] ) ,
lrsign = command = = "arcleft" ? 1 : - 1 ,
radius = parm * sign ( myangle ) ,
center = lastpt + lrsign * radius * line_normal ( [ 0 , 0 ] , state [ step ] ) ,
steps = state [ arcsteps ] = = 0 ? segs ( abs ( radius ) ) : state [ arcsteps ] ,
arcpath = myangle = = 0 || radius = = 0 ? [ ] : arc (
steps ,
points = [
lastpt ,
rot ( cp = center , p = lastpt , a = sign ( parm ) * lrsign * myangle / 2 ) ,
rot ( cp = center , p = lastpt , a = sign ( parm ) * lrsign * myangle )
]
)
)
list_set (
state , [ path , step ] , [
concat ( state [ path ] , slice ( arcpath , 1 , - 1 ) ) ,
rot ( lrsign * myangle , p = state [ step ] , planar = true )
]
) :
command = = "arcleftto" || command = = "arcrightto" ?
assert ( is_num ( parm ) , str ( "\"" , command , "\" command requires a numeric radius value at index " , index ) )
assert ( is_num ( parm2 ) , str ( "\"" , command , "\" command requires a numeric angle value at index " , index ) )
let (
radius = parm ,
lrsign = command = = "arcleftto" ? 1 : - 1 ,
center = lastpt + lrsign * radius * line_normal ( [ 0 , 0 ] , state [ step ] ) ,
steps = state [ arcsteps ] = = 0 ? segs ( abs ( radius ) ) : state [ arcsteps ] ,
start_angle = posmod ( atan2 ( state [ step ] . y , state [ step ] . x ) , 360 ) ,
end_angle = posmod ( parm2 , 360 ) ,
delta_angle = - start_angle + ( lrsign * end_angle < lrsign * start_angle ? end_angle + lrsign * 360 : end_angle ) ,
arcpath = delta_angle = = 0 || radius = = 0 ? [ ] : arc (
steps ,
points = [
lastpt ,
rot ( cp = center , p = lastpt , a = sign ( radius ) * delta_angle / 2 ) ,
rot ( cp = center , p = lastpt , a = sign ( radius ) * delta_angle )
]
)
)
list_set (
state , [ path , step ] , [
concat ( state [ path ] , slice ( arcpath , 1 , - 1 ) ) ,
rot ( delta_angle , p = state [ step ] , planar = true )
]
) :
2019-05-12 10:32:56 +00:00
2020-01-06 05:36:27 +00:00
assert ( false , str ( "Unknown turtle command \"" , command , "\" at index" , index ) )
[ ] ;
2019-05-29 23:27:35 +00:00
2019-05-12 10:32:56 +00:00
2020-01-06 05:36:27 +00:00
// Section: 2D N-Gons
2019-05-12 10:32:56 +00:00
2019-05-13 01:10:15 +00:00
// Function&Module: regular_ngon()
2019-05-12 10:32:56 +00:00
// Usage:
2019-08-04 13:48:13 +00:00
// regular_ngon(n, r|d|or|od, [realign]);
2019-05-12 10:32:56 +00:00
// regular_ngon(n, ir|id, [realign]);
// regular_ngon(n, side, [realign]);
// Description:
2019-05-13 01:10:15 +00:00
// When called as a function, returns a 2D path for a regular N-sided polygon.
// When called as a module, creates a 2D regular N-sided polygon.
2019-05-12 10:32:56 +00:00
// Arguments:
// n = The number of sides.
// or = Outside radius, at points.
2019-08-04 13:48:13 +00:00
// r = Same as or
2019-05-12 10:32:56 +00:00
// od = Outside diameter, at points.
2019-08-04 13:48:13 +00:00
// d = Same as od
2019-05-12 10:32:56 +00:00
// ir = Inside radius, at center of sides.
// id = Inside diameter, at center of sides.
// side = Length of each side.
// realign = If false, a tip is aligned with the Y+ axis. If true, the midpoint of a side is aligned with the Y+ axis. Default: false
2019-05-29 23:27:35 +00:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
2019-05-13 01:10:15 +00:00
// Example(2D): by Outer Size
// regular_ngon(n=5, or=30);
// regular_ngon(n=5, od=60);
// Example(2D): by Inner Size
// regular_ngon(n=5, ir=30);
// regular_ngon(n=5, id=60);
// Example(2D): by Side Length
// regular_ngon(n=8, side=20);
// Example(2D): Realigned
// regular_ngon(n=8, side=20, realign=true);
// Example(2D): Called as Function
2019-07-12 20:11:13 +00:00
// stroke(closed=true, regular_ngon(n=6, or=30));
2019-08-03 09:18:40 +00:00
function regular_ngon ( n = 6 , r , d , or , od , ir , id , side , realign = false , anchor = CENTER , spin = 0 ) =
2019-05-12 10:32:56 +00:00
let (
sc = 1 / cos ( 180 / n ) ,
2019-08-03 09:18:40 +00:00
r = get_radius ( r1 = ir * sc , r2 = or , r = r , d1 = id * sc , d2 = od , d = d , dflt = side / 2 / sin ( 180 / n ) ) ,
2019-11-04 03:01:14 +00:00
path = circle ( r = r , realign = realign , spin = 90 , $fn = n )
2019-05-29 23:27:35 +00:00
) rot ( spin , p = move ( - r * normalize ( anchor ) , p = path ) ) ;
2019-05-12 10:32:56 +00:00
2019-11-04 03:01:14 +00:00
module regular_ngon ( n = 6 , r , d , or , od , ir , id , side , realign = false , anchor = CENTER , spin = 0 ) {
sc = 1 / cos ( 180 / n ) ;
r = get_radius ( r1 = ir * sc , r2 = or , r = r , d1 = id * sc , d2 = od , d = d , dflt = side / 2 / sin ( 180 / n ) ) ;
orient_and_anchor ( [ 2 * r , 2 * r , 0 ] , UP , anchor , spin = spin , geometry = "cylinder" , two_d = true , chain = true ) {
polygon ( circle ( r = r , realign = realign , spin = 90 , $fn = n ) ) ;
children ( ) ;
}
}
2019-05-12 10:32:56 +00:00
2019-05-13 01:10:15 +00:00
// Function&Module: pentagon()
2019-05-12 10:32:56 +00:00
// Usage:
// pentagon(or|od, [realign]);
// pentagon(ir|id, [realign];
// pentagon(side, [realign];
// Description:
2019-05-13 01:10:15 +00:00
// When called as a function, returns a 2D path for a regular pentagon.
// When called as a module, creates a 2D regular pentagon.
2019-05-12 10:32:56 +00:00
// Arguments:
// or = Outside radius, at points.
2019-08-04 13:48:13 +00:00
// r = Same as or.
2019-05-12 10:32:56 +00:00
// od = Outside diameter, at points.
2019-08-04 13:48:13 +00:00
// d = Same as od.
2019-05-12 10:32:56 +00:00
// ir = Inside radius, at center of sides.
// id = Inside diameter, at center of sides.
// side = Length of each side.
// realign = If false, a tip is aligned with the Y+ axis. If true, the midpoint of a side is aligned with the Y+ axis. Default: false
2019-05-29 23:27:35 +00:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
2019-05-13 01:10:15 +00:00
// Example(2D): by Outer Size
2019-05-12 10:32:56 +00:00
// pentagon(or=30);
// pentagon(od=60);
2019-05-13 01:10:15 +00:00
// Example(2D): by Inner Size
2019-05-12 10:32:56 +00:00
// pentagon(ir=30);
// pentagon(id=60);
2019-05-13 01:10:15 +00:00
// Example(2D): by Side Length
2019-05-12 10:32:56 +00:00
// pentagon(side=20);
2019-05-13 01:10:15 +00:00
// Example(2D): Realigned
// pentagon(side=20, realign=true);
// Example(2D): Called as Function
2019-07-12 20:11:13 +00:00
// stroke(closed=true, pentagon(or=30));
2019-08-03 09:18:40 +00:00
function pentagon ( r , d , or , od , ir , id , side , realign = false , anchor = CENTER , spin = 0 ) =
regular_ngon ( n = 5 , r = r , d = d , or = or , od = od , ir = ir , id = id , side = side , realign = realign , anchor = anchor , spin = spin ) ;
2019-05-12 10:32:56 +00:00
2019-08-03 09:18:40 +00:00
module pentagon ( r , d , or , od , ir , id , side , realign = false , anchor = CENTER , spin = 0 )
2019-11-04 03:01:14 +00:00
regular_ngon ( n = 5 , r = r , d = d , or = or , od = od , ir = ir , id = id , side = side , realign = realign , anchor = anchor , spin = spin ) children ( ) ;
2019-05-12 10:32:56 +00:00
2019-05-13 01:10:15 +00:00
// Function&Module: hexagon()
2019-05-12 10:32:56 +00:00
// Usage:
// hexagon(or, od, ir, id, side);
// Description:
2019-05-13 01:10:15 +00:00
// When called as a function, returns a 2D path for a regular hexagon.
// When called as a module, creates a 2D regular hexagon.
2019-05-12 10:32:56 +00:00
// Arguments:
// or = Outside radius, at points.
2019-08-04 13:48:13 +00:00
// r = Same as or
2019-05-12 10:32:56 +00:00
// od = Outside diameter, at points.
2019-08-04 13:48:13 +00:00
// d = Same as od
2019-05-12 10:32:56 +00:00
// ir = Inside radius, at center of sides.
// id = Inside diameter, at center of sides.
// side = Length of each side.
// realign = If false, a tip is aligned with the Y+ axis. If true, the midpoint of a side is aligned with the Y+ axis. Default: false
2019-05-29 23:27:35 +00:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
2019-05-13 01:10:15 +00:00
// Example(2D): by Outer Size
2019-05-12 10:32:56 +00:00
// hexagon(or=30);
// hexagon(od=60);
2019-05-13 01:10:15 +00:00
// Example(2D): by Inner Size
2019-05-12 10:32:56 +00:00
// hexagon(ir=30);
// hexagon(id=60);
2019-05-13 01:10:15 +00:00
// Example(2D): by Side Length
2019-05-12 10:32:56 +00:00
// hexagon(side=20);
2019-05-13 01:10:15 +00:00
// Example(2D): Realigned
// hexagon(side=20, realign=true);
// Example(2D): Called as Function
2019-07-12 20:11:13 +00:00
// stroke(closed=true, hexagon(or=30));
2019-08-03 09:18:40 +00:00
function hexagon ( r , d , or , od , ir , id , side , realign = false , anchor = CENTER , spin = 0 ) =
regular_ngon ( n = 6 , r = r , d = d , or = or , od = od , ir = ir , id = id , side = side , realign = realign , anchor = anchor , spin = spin ) ;
2019-05-12 10:32:56 +00:00
2019-08-03 09:18:40 +00:00
module hexagon ( r , d , or , od , ir , id , side , realign = false , anchor = CENTER , spin = 0 )
2019-11-04 03:01:14 +00:00
regular_ngon ( n = 6 , r = r , d = d , or = or , od = od , ir = ir , id = id , side = side , realign = realign , anchor = anchor , spin = spin ) children ( ) ;
2019-05-12 10:32:56 +00:00
2019-05-13 01:10:15 +00:00
// Function&Module: octagon()
2019-05-12 10:32:56 +00:00
// Usage:
// octagon(or, od, ir, id, side);
// Description:
2019-05-13 01:10:15 +00:00
// When called as a function, returns a 2D path for a regular octagon.
// When called as a module, creates a 2D regular octagon.
2019-05-12 10:32:56 +00:00
// Arguments:
// or = Outside radius, at points.
2019-08-04 13:48:13 +00:00
// r = Same as or
2019-05-12 10:32:56 +00:00
// od = Outside diameter, at points.
2019-08-04 13:48:13 +00:00
// d = Same as od
2019-05-12 10:32:56 +00:00
// ir = Inside radius, at center of sides.
// id = Inside diameter, at center of sides.
// side = Length of each side.
// realign = If false, a tip is aligned with the Y+ axis. If true, the midpoint of a side is aligned with the Y+ axis. Default: false
2019-05-29 23:27:35 +00:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
2019-05-13 01:10:15 +00:00
// Example(2D): by Outer Size
2019-05-12 10:32:56 +00:00
// octagon(or=30);
// octagon(od=60);
2019-05-13 01:10:15 +00:00
// Example(2D): by Inner Size
2019-05-12 10:32:56 +00:00
// octagon(ir=30);
// octagon(id=60);
2019-05-13 01:10:15 +00:00
// Example(2D): by Side Length
2019-05-12 10:32:56 +00:00
// octagon(side=20);
2019-05-13 01:10:15 +00:00
// Example(2D): Realigned
// octagon(side=20, realign=true);
// Example(2D): Called as Function
2019-07-12 20:11:13 +00:00
// stroke(closed=true, octagon(or=30));
2019-08-03 09:18:40 +00:00
function octagon ( r , d , or , od , ir , id , side , realign = false , anchor = CENTER , spin = 0 ) =
regular_ngon ( n = 8 , r = r , d = d , or = or , od = od , ir = ir , id = id , side = side , realign = realign , anchor = anchor , spin = spin ) ;
2019-05-13 01:10:15 +00:00
2019-08-03 09:18:40 +00:00
module octagon ( r , d , or , od , ir , id , side , realign = false , anchor = CENTER , spin = 0 )
2019-11-04 03:01:14 +00:00
regular_ngon ( n = 8 , r = r , d = d , or = or , od = od , ir = ir , id = id , side = side , realign = realign , anchor = anchor , spin = spin ) children ( ) ;
2019-05-12 10:32:56 +00:00
2020-01-06 05:36:27 +00:00
// Section: Other 2D Shapes
// Function&Module: trapezoid()
// Usage:
// trapezoid(h, w1, w2);
// Description:
// When called as a function, returns a 2D path for a trapezoid with parallel front and back sides.
// When called as a module, creates a 2D trapezoid with parallel front and back sides.
// Arguments:
// h = The Y axis height of the trapezoid.
// w1 = The X axis width of the front end of the trapezoid.
// w2 = The X axis width of the back end of the trapezoid.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// Examples(2D):
// trapezoid(h=30, w1=40, w2=20);
// trapezoid(h=25, w1=20, w2=35);
// trapezoid(h=20, w1=40, w2=0);
// Example(2D): Called as Function
// stroke(closed=true, trapezoid(h=30, w1=40, w2=20));
function trapezoid ( h , w1 , w2 , anchor = CENTER , spin = 0 ) =
let (
s = anchor . y > 0 ? [ w2 , h ] : anchor . y < 0 ? [ w1 , h ] : [ ( w1 + w2 ) / 2 , h ] ,
path = [ [ w1 / 2 , - h / 2 ] , [ - w1 / 2 , - h / 2 ] , [ - w2 / 2 , h / 2 ] , [ w2 / 2 , h / 2 ] ]
) rot ( spin , p = move ( - vmul ( anchor , s / 2 ) , p = path ) ) ;
module trapezoid ( h , w1 , w2 , anchor = CENTER , spin = 0 )
polygon ( trapezoid ( h = h , w1 = w1 , w2 = w2 , anchor = anchor , spin = spin ) ) ;
// Function&Module: teardrop2d()
//
// Description:
// Makes a 2D teardrop shape. Useful for extruding into 3D printable holes.
//
// Usage:
// teardrop2d(r|d, [ang], [cap_h]);
//
// Arguments:
// r = radius of circular part of teardrop. (Default: 1)
// d = diameter of spherical portion of bottom. (Use instead of r)
// ang = angle of hat walls from the Y axis. (Default: 45 degrees)
// cap_h = if given, height above center where the shape will be truncated.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
//
// Example(2D): Typical Shape
// teardrop2d(r=30, ang=30);
// Example(2D): Crop Cap
// teardrop2d(r=30, ang=30, cap_h=40);
// Example(2D): Close Crop
// teardrop2d(r=30, ang=30, cap_h=20);
module teardrop2d ( r , d , ang = 45 , cap_h , anchor = CENTER , spin = 0 )
{
path = teardrop2d ( r = r , d = d , ang = ang , cap_h = cap_h , anchor = anchor , spin = spin ) ;
polygon ( path ) ;
}
function teardrop2d ( r , d , ang = 45 , cap_h , anchor = CENTER , spin = 0 ) =
let (
r = get_radius ( r = r , d = d , dflt = 1 ) ,
cord = 2 * r * cos ( ang ) ,
cord_h = r * sin ( ang ) ,
tip_y = ( cord / 2 ) / tan ( ang ) ,
cap_h = min ( ( ! is_undef ( cap_h ) ? cap_h : tip_y + cord_h ) , tip_y + cord_h ) ,
cap_w = cord * ( 1 - ( cap_h - cord_h ) / tip_y ) ,
ang = min ( ang , asin ( cap_h / r ) ) ,
sa = 180 - ang ,
ea = 360 + ang ,
steps = segs ( r ) * ( ea - sa ) / 360 ,
step = ( ea - sa ) / steps ,
path = concat (
[ [ cap_w / 2 , cap_h ] ] ,
[ for ( i = [ 0 : 1 : steps ] ) let ( a = ea - i * step ) r * [ cos ( a ) , sin ( a ) ] ] ,
[ [ - cap_w / 2 , cap_h ] ]
)
) rot ( spin , p = move ( - vmul ( anchor , [ r , cap_h ] ) , p = deduplicate ( path , closed = true ) ) ) ;
2019-05-13 01:10:15 +00:00
// Function&Module: glued_circles()
2019-05-12 10:32:56 +00:00
// Usage:
// glued_circles(r|d, spread, tangent);
// Description:
2019-05-13 01:10:15 +00:00
// When called as a function, returns a 2D path forming a shape of two circles joined by curved waist.
// When called as a module, creates a 2D shape of two circles joined by curved waist.
2019-05-12 10:32:56 +00:00
// Arguments:
// r = The radius of the end circles.
// d = The diameter of the end circles.
// spread = The distance between the centers of the end circles.
// tangent = The angle in degrees of the tangent point for the joining arcs, measured away from the Y axis.
2019-05-29 23:27:35 +00:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
2019-05-12 10:32:56 +00:00
// Examples(2D):
2019-05-13 01:10:15 +00:00
// glued_circles(r=15, spread=40, tangent=45);
// glued_circles(d=30, spread=30, tangent=30);
// glued_circles(d=30, spread=30, tangent=15);
// glued_circles(d=30, spread=30, tangent=-30);
// Example(2D): Called as Function
2019-07-12 20:11:13 +00:00
// stroke(closed=true, glued_circles(r=15, spread=40, tangent=45));
2019-08-03 09:18:40 +00:00
function glued_circles ( r , d , spread = 10 , tangent = 30 , anchor = CENTER , spin = 0 ) =
2019-05-12 10:32:56 +00:00
let (
r = get_radius ( r = r , d = d , dflt = 10 ) ,
r2 = ( spread / 2 / sin ( tangent ) ) - r ,
cp1 = [ spread / 2 , 0 ] ,
cp2 = [ 0 , ( r + r2 ) * cos ( tangent ) ] ,
sa1 = 90 - tangent ,
ea1 = 270 + tangent ,
lobearc = ea1 - sa1 ,
lobesegs = floor ( segs ( r ) * lobearc / 360 ) ,
lobestep = lobearc / lobesegs ,
sa2 = 270 - tangent ,
ea2 = 270 + tangent ,
subarc = ea2 - sa2 ,
arcsegs = ceil ( segs ( r2 ) * abs ( subarc ) / 360 ) ,
2019-05-29 23:27:35 +00:00
arcstep = subarc / arcsegs ,
s = [ spread / 2 + r , r ] ,
path = concat (
[ for ( i = [ 0 : 1 : lobesegs ] ) let ( a = sa1 + i * lobestep ) r * [ cos ( a ) , sin ( a ) ] - cp1 ] ,
tangent = = 0 ? [ ] : [ for ( i = [ 0 : 1 : arcsegs ] ) let ( a = ea2 - i * arcstep + 180 ) r2 * [ cos ( a ) , sin ( a ) ] - cp2 ] ,
[ for ( i = [ 0 : 1 : lobesegs ] ) let ( a = sa1 + i * lobestep + 180 ) r * [ cos ( a ) , sin ( a ) ] + cp1 ] ,
tangent = = 0 ? [ ] : [ for ( i = [ 0 : 1 : arcsegs ] ) let ( a = ea2 - i * arcstep ) r2 * [ cos ( a ) , sin ( a ) ] + cp2 ]
)
) rot ( spin , p = move ( - vmul ( anchor , s ) , p = path ) ) ;
2019-05-12 10:32:56 +00:00
2019-08-03 09:18:40 +00:00
module glued_circles ( r , d , spread = 10 , tangent = 30 , anchor = CENTER , spin = 0 )
2019-05-29 23:27:35 +00:00
polygon ( glued_circles ( r = r , d = d , spread = spread , tangent = tangent , anchor = anchor , spin = spin ) ) ;
2019-05-12 10:32:56 +00:00
2019-05-13 01:10:15 +00:00
// Function&Module: star()
2019-05-12 10:32:56 +00:00
// Usage:
2019-08-04 13:48:13 +00:00
// star(n, r|d|or|od, ir|id|step, [realign]);
2019-05-12 10:32:56 +00:00
// Description:
2019-05-13 01:10:15 +00:00
// When called as a function, returns the path needed to create a star polygon with N points.
// When called as a module, creates a star polygon with N points.
2019-05-12 10:32:56 +00:00
// Arguments:
// n = The number of stellate tips on the star.
// r = The radius to the tips of the star.
2019-08-04 13:48:13 +00:00
// or = Same as r
2019-05-12 10:32:56 +00:00
// d = The diameter to the tips of the star.
2019-08-04 13:48:13 +00:00
// od = Same as d
2019-05-12 10:32:56 +00:00
// ir = The radius to the inner corners of the star.
// id = The diameter to the inner corners of the star.
// step = Calculates the radius of the inner star corners by virtually drawing a straight line `step` tips around the star. 2 <= step < n/2
// realign = If false, a tip is aligned with the Y+ axis. If true, an inner corner is aligned with the Y+ axis. Default: false
2019-05-29 23:27:35 +00:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
2019-05-12 10:32:56 +00:00
// Examples(2D):
2019-05-13 01:10:15 +00:00
// star(n=5, r=50, ir=25);
// star(n=5, r=50, step=2);
// star(n=7, r=50, step=2);
// star(n=7, r=50, step=3);
// Example(2D): Realigned
// star(n=7, r=50, step=3, realign=true);
// Example(2D): Called as Function
2019-07-12 20:11:13 +00:00
// stroke(closed=true, star(n=5, r=50, ir=25));
2019-08-04 13:48:13 +00:00
function star ( n , r , d , or , od , ir , id , step , realign = false , anchor = CENTER , spin = 0 ) =
2019-05-12 10:32:56 +00:00
let (
2019-08-04 13:48:13 +00:00
r = get_radius ( r1 = or , d1 = od , r = r , d = d ) ,
2019-05-16 04:38:54 +00:00
count = num_defined ( [ ir , id , step ] ) ,
2019-05-12 10:32:56 +00:00
stepOK = is_undef ( step ) || ( step > 1 && step < n / 2 )
)
2019-09-01 06:13:25 +00:00
assert ( is_def ( n ) , "Must specify number of points, n" )
2019-05-12 10:32:56 +00:00
assert ( count = = 1 , "Must specify exactly one of ir, id, step" )
assert ( stepOK , str ( "Parameter 'step' must be between 2 and " , floor ( n / 2 ) , " for " , n , " point star" ) )
let (
stepr = is_undef ( step ) ? r : r * cos ( 180 * step / n ) / cos ( 180 * ( step - 1 ) / n ) ,
ir = get_radius ( r = ir , d = id , dflt = stepr ) ,
2019-05-29 23:27:35 +00:00
offset = 90 + ( realign ? 180 / n : 0 ) ,
path = [ for ( i = [ 0 : 1 : 2 * n - 1 ] ) let ( theta = 180 * i / n + offset , radius = ( i % 2 ) ? ir : r ) radius * [ cos ( theta ) , sin ( theta ) ] ]
) rot ( spin , p = move ( - r * normalize ( anchor ) , p = path ) ) ;
2019-05-12 10:32:56 +00:00
2019-08-04 13:48:13 +00:00
module star ( n , r , d , or , od , ir , id , step , realign = false , anchor = CENTER , spin = 0 )
polygon ( star ( n = n , r = r , d = d , od = od , or = or , ir = ir , id = id , step = step , realign = realign , anchor = anchor , spin = spin ) ) ;
2019-05-12 10:32:56 +00:00
function _superformula ( theta , m1 , m2 , n1 , n2 = 1 , n3 = 1 , a = 1 , b = 1 ) =
pow ( pow ( abs ( cos ( m1 * theta / 4 ) / a ) , n2 ) + pow ( abs ( sin ( m2 * theta / 4 ) / b ) , n3 ) , - 1 / n1 ) ;
2019-06-12 01:56:10 +00:00
// Function&Module: supershape()
2019-05-12 10:32:56 +00:00
// Usage:
2019-06-12 01:56:10 +00:00
// supershape(step,[m1],[m2],[n1],[n2],[n3],[a],[b],[r|d]);
2019-05-12 10:32:56 +00:00
// Description:
2019-05-13 01:10:15 +00:00
// When called as a function, returns a 2D path for the outline of the [Superformula](https://en.wikipedia.org/wiki/Superformula) shape.
// When called as a module, creates a 2D [Superformula](https://en.wikipedia.org/wiki/Superformula) shape.
2019-05-12 10:32:56 +00:00
// Arguments:
// step = The angle step size for sampling the superformula shape. Smaller steps are slower but more accurate.
2019-07-14 19:30:46 +00:00
// m1 = The m1 argument for the superformula. Default: 4.
2019-06-12 01:56:10 +00:00
// m2 = The m2 argument for the superformula. Default: m1.
// n1 = The n1 argument for the superformula. Default: 1.
// n2 = The n2 argument for the superformula. Default: n1.
// n3 = The n3 argument for the superformula. Default: n2.
// a = The a argument for the superformula. Default: 1.
// b = The b argument for the superformula. Default: a.
// r = Radius of the shape. Scale shape to fit in a circle of radius r.
// d = Diameter of the shape. Scale shape to fit in a circle of diameter d.
2019-05-29 23:27:35 +00:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
2019-05-12 10:32:56 +00:00
// Example(2D):
2019-06-12 01:56:10 +00:00
// supershape(step=0.5,m1=16,m2=16,n1=0.5,n2=0.5,n3=16,r=50);
2019-05-13 01:10:15 +00:00
// Example(2D): Called as Function
2019-07-12 20:11:13 +00:00
// stroke(closed=true, supershape(step=0.5,m1=16,m2=16,n1=0.5,n2=0.5,n3=16,d=100));
2019-06-18 08:08:24 +00:00
// Examples(2D,Med):
2019-06-12 01:56:10 +00:00
// for(n=[2:5]) right(2.5*(n-2)) supershape(m1=4,m2=4,n1=n,a=1,b=2); // Superellipses
// m=[2,3,5,7]; for(i=[0:3]) right(2.5*i) supershape(.5,m1=m[i],n1=1);
// m=[6,8,10,12]; for(i=[0:3]) right(2.7*i) supershape(.5,m1=m[i],n1=1,b=1.5); // m should be even
// m=[1,2,3,5]; for(i=[0:3]) fwd(1.5*i) supershape(m1=m[i],n1=0.4);
// supershape(m1=5, n1=4, n2=1); right(2.5) supershape(m1=5, n1=40, n2=10);
// m=[2,3,5,7]; for(i=[0:3]) right(2.5*i) supershape(m1=m[i], n1=60, n2=55, n3=30);
// n=[0.5,0.2,0.1,0.02]; for(i=[0:3]) right(2.5*i) supershape(m1=5,n1=n[i], n2=1.7);
// supershape(m1=2, n1=1, n2=4, n3=8);
// supershape(m1=7, n1=2, n2=8, n3=4);
// supershape(m1=7, n1=3, n2=4, n3=17);
// supershape(m1=4, n1=1/2, n2=1/2, n3=4);
// supershape(m1=4, n1=4.0,n2=16, n3=1.5, a=0.9, b=9);
2019-07-14 19:30:46 +00:00
// for(i=[1:4]) right(3*i) supershape(m1=i, m2=3*i, n1=2);
2019-06-12 01:56:10 +00:00
// m=[4,6,10]; for(i=[0:2]) right(i*5) supershape(m1=m[i], n1=12, n2=8, n3=5, a=2.7);
2019-06-23 21:21:00 +00:00
// for(i=[-1.5:3:1.5]) right(i*1.5) supershape(m1=2,m2=10,n1=i,n2=1);
// for(i=[1:3],j=[-1,1]) translate([3.5*i,1.5*j])supershape(m1=4,m2=6,n1=i*j,n2=1);
// for(i=[1:3]) right(2.5*i)supershape(step=.5,m1=88, m2=64, n1=-i*i,n2=1,r=1);
2019-12-07 00:27:49 +00:00
// Examples:
// linear_extrude(height=0.3, scale=0) supershape(step=1, m1=6, n1=0.4, n2=0, n3=6);
// linear_extrude(height=5, scale=0) supershape(step=1, b=3, m1=6, n1=3.8, n2=16, n3=10);
2019-06-12 01:56:10 +00:00
function supershape ( step = 0.5 , m1 = 4 , m2 = undef , n1 = 1 , n2 = undef , n3 = undef , a = 1 , b = undef , r = undef , d = undef , anchor = CENTER , spin = 0 ) =
2019-05-29 23:27:35 +00:00
let (
2019-08-03 09:18:40 +00:00
r = get_radius ( r = r , d = d , dflt = undef ) ,
2019-06-18 08:08:24 +00:00
m2 = is_def ( m2 ) ? m2 : m1 ,
n2 = is_def ( n2 ) ? n2 : n1 ,
n3 = is_def ( n3 ) ? n3 : n2 ,
b = is_def ( b ) ? b : a ,
2019-05-29 23:27:35 +00:00
steps = ceil ( 360 / step ) ,
step = 360 / steps ,
angs = [ for ( i = [ 0 : steps - 1 ] ) step * i ] ,
2019-06-12 01:56:10 +00:00
rads = [ for ( theta = angs ) _superformula ( theta = theta , m1 = m1 , m2 = m2 , n1 = n1 , n2 = n2 , n3 = n3 , a = a , b = b ) ] ,
2019-06-18 08:08:24 +00:00
scale = is_def ( r ) ? r / max ( rads ) : 1 ,
2019-06-12 01:56:10 +00:00
path = [ for ( i = [ 0 : steps - 1 ] ) let ( a = angs [ i ] ) scale * rads [ i ] * [ cos ( a ) , sin ( a ) ] ]
) rot ( spin , p = move ( - scale * max ( rads ) * normalize ( anchor ) , p = path ) ) ;
2019-05-12 10:32:56 +00:00
2019-06-12 01:56:10 +00:00
module supershape ( step = 0.5 , m1 = 4 , m2 = undef , n1 , n2 = undef , n3 = undef , a = 1 , b = undef , r = undef , d = undef , anchor = CENTER , spin = 0 )
polygon ( supershape ( step = step , m1 = m1 , m2 = m2 , n1 = n1 , n2 = n2 , n3 = n3 , a = a , b = b , r = r , d = d , anchor = anchor , spin = spin ) ) ;
2019-05-12 10:32:56 +00:00
2019-06-18 08:08:24 +00:00
2019-08-31 07:43:06 +00:00
2019-05-12 10:32:56 +00:00
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap