2017-08-30 00:00:16 +00:00
//////////////////////////////////////////////////////////////////////
2019-03-23 04:13:18 +00:00
// LibFile: transforms.scad
// This is the file that the most commonly used transformations, distributors, and mutator are in.
// To use, add the following lines to the beginning of your file:
// ```
2019-04-19 07:25:10 +00:00
// include <BOSL2/std.scad>
2019-03-23 04:13:18 +00:00
// ```
2017-08-30 00:00:16 +00:00
//////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////
2019-03-23 04:13:18 +00:00
// Section: Translations
2017-08-30 00:00:16 +00:00
//////////////////////////////////////////////////////////////////////
2019-05-27 01:14:26 +00:00
// Function&Module: move()
2019-03-23 04:13:18 +00:00
//
2019-05-27 01:14:26 +00:00
// Usage: As Module
2019-03-23 04:13:18 +00:00
// move([x], [y], [z]) ...
2019-12-04 10:24:34 +00:00
// move(v) ...
2019-05-27 01:14:26 +00:00
// Usage: Translate Points
2019-12-04 10:24:34 +00:00
// pts = move(v, p);
2019-05-27 01:14:26 +00:00
// pts = move([x], [y], [z], p);
// Usage: Get Translation Matrix
2019-12-04 10:24:34 +00:00
// mat = move(v);
//
// Description:
// Translates position by the given amount.
// * Called as a module, moves/translates all children.
// * Called as a function with a point in the `p` argument, returns the translated point.
// * Called as a function with a list of points in the `p` argument, returns the translated list of points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the translated patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the translated VNF.
// * Called as a function with the `p` argument, returns the translated point or list of points.
// * Called as a function without a `p` argument, with a 2D offset vector `v`, returns an affine2d translation matrix.
// * Called as a function without a `p` argument, with a 3D offset vector `v`, returns an affine3d translation matrix.
2019-03-23 04:13:18 +00:00
//
// Arguments:
2019-12-04 10:24:34 +00:00
// v = An [X,Y,Z] vector to translate by.
2017-08-30 00:00:16 +00:00
// x = X axis translation.
// y = Y axis translation.
// z = Z axis translation.
2019-05-27 01:14:26 +00:00
// p = Either a point, or a list of points to be translated when used as a function.
2019-03-23 04:13:18 +00:00
//
2017-08-30 00:00:16 +00:00
// Example:
2019-03-23 04:13:18 +00:00
// #sphere(d=10);
// move([0,20,30]) sphere(d=10);
//
// Example:
// #sphere(d=10);
// move(y=20) sphere(d=10);
//
// Example:
// #sphere(d=10);
// move(x=-10, y=-5) sphere(d=10);
2019-05-27 01:14:26 +00:00
//
2019-12-04 10:24:34 +00:00
// Example(2D):
// path = square([50,30], center=true);
// #stroke(path, closed=true);
// stroke(move([10,20],p=path), closed=true);
//
2019-05-27 01:14:26 +00:00
// Example(NORENDER):
// pt1 = move([0,20,30], p=[15,23,42]); // Returns: [15, 43, 72]
// pt2 = move(y=10, p=[15,23,42]); // Returns: [15, 33, 42]
// pt3 = move([0,3,1], p=[[1,2,3],[4,5,6]]); // Returns: [[1,5,4], [4,8,7]]
// pt4 = move(y=11, p=[[1,2,3],[4,5,6]]); // Returns: [[1,13,3], [4,16,6]]
// mat2d = move([2,3]); // Returns: [[1,0,2],[0,1,3],[0,0,1]]
// mat3d = move([2,3,4]); // Returns: [[1,0,0,2],[0,1,0,3],[0,0,1,4],[0,0,0,1]]
2019-12-04 10:24:34 +00:00
module move ( v = [ 0 , 0 , 0 ] , x = 0 , y = 0 , z = 0 )
2019-03-23 04:13:18 +00:00
{
2019-12-04 10:24:34 +00:00
translate ( v + [ x , y , z ] ) children ( ) ;
2017-08-30 00:00:16 +00:00
}
2019-12-04 10:24:34 +00:00
function move ( v = [ 0 , 0 , 0 ] , p = undef , x = 0 , y = 0 , z = 0 ) =
2019-05-27 01:14:26 +00:00
is_undef ( p ) ? (
2019-12-04 10:24:34 +00:00
len ( v ) = = 2 ? affine2d_translate ( v + [ x , y ] ) :
affine3d_translate ( point3d ( v ) + [ x , y , z ] )
2019-05-27 01:14:26 +00:00
) : (
2019-12-04 10:24:34 +00:00
assert ( is_list ( p ) )
let ( v = v + [ x , y , z ] )
is_num ( p . x ) ? p + v :
is_vnf ( p ) ? [ move ( v = v , p = p . x ) , p . y ] :
[ for ( l = p ) is_vector ( l ) ? l + v : move ( v = v , p = l ) ]
2019-05-27 01:14:26 +00:00
) ;
2019-12-04 10:24:34 +00:00
function translate ( v = [ 0 , 0 , 0 ] , p = undef ) = move ( v = v , p = p ) ;
2019-08-06 23:43:41 +00:00
2017-08-30 00:00:16 +00:00
2019-08-22 06:54:36 +00:00
// Function&Module: left()
2019-03-23 04:13:18 +00:00
//
2019-08-22 06:54:36 +00:00
// Usage: As Module
2019-03-23 04:13:18 +00:00
// left(x) ...
2019-08-22 06:54:36 +00:00
// Usage: Translate Points
// pts = left(x, p);
// Usage: Get Translation Matrix
// mat = left(x);
//
// Description:
// If called as a module, moves/translates all children left (in the X- direction) by the given amount.
// If called as a function with the `p` argument, returns the translated point or list of points.
// If called as a function without the `p` argument, returns an affine3d translation matrix.
2019-03-23 04:13:18 +00:00
//
// Arguments:
// x = Scalar amount to move left.
2019-08-22 06:54:36 +00:00
// p = Either a point, or a list of points to be translated when used as a function.
2019-03-23 04:13:18 +00:00
//
2017-08-30 00:00:16 +00:00
// Example:
2019-03-23 04:13:18 +00:00
// #sphere(d=10);
// left(20) sphere(d=10);
2019-08-22 06:54:36 +00:00
//
// Example(NORENDER):
// pt1 = left(20, p=[23,42]); // Returns: [3,42]
// pt2 = left(20, p=[15,23,42]); // Returns: [-5,23,42]
// pt3 = left(3, p=[[1,2,3],[4,5,6]]); // Returns: [[-2,2,3], [1,5,6]]
// mat3d = left(4); // Returns: [[1,0,0,-4],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
2019-03-23 04:13:18 +00:00
module left ( x = 0 ) translate ( [ - x , 0 , 0 ] ) children ( ) ;
2019-12-04 10:24:34 +00:00
function left ( x = 0 , p = undef ) = move ( [ - x , 0 , 0 ] , p = p ) ;
2019-03-23 04:13:18 +00:00
2019-08-22 06:54:36 +00:00
// Function&Module: right()
2019-03-23 04:13:18 +00:00
//
2019-08-22 06:54:36 +00:00
// Usage: As Module
2019-03-23 04:13:18 +00:00
// right(x) ...
2019-08-22 06:54:36 +00:00
// Usage: Translate Points
// pts = right(x, p);
// Usage: Get Translation Matrix
// mat = right(x);
//
// Description:
// If called as a module, moves/translates all children right (in the X+ direction) by the given amount.
// If called as a function with the `p` argument, returns the translated point or list of points.
// If called as a function without the `p` argument, returns an affine3d translation matrix.
2019-03-23 04:13:18 +00:00
//
// Arguments:
// x = Scalar amount to move right.
2019-08-22 06:54:36 +00:00
// p = Either a point, or a list of points to be translated when used as a function.
2019-03-23 04:13:18 +00:00
//
2017-08-30 00:00:16 +00:00
// Example:
2019-03-23 04:13:18 +00:00
// #sphere(d=10);
// right(20) sphere(d=10);
2019-08-22 06:54:36 +00:00
//
// Example(NORENDER):
// pt1 = right(20, p=[23,42]); // Returns: [43,42]
// pt2 = right(20, p=[15,23,42]); // Returns: [35,23,42]
// pt3 = right(3, p=[[1,2,3],[4,5,6]]); // Returns: [[4,2,3], [7,5,6]]
// mat3d = right(4); // Returns: [[1,0,0,4],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
2019-03-23 04:13:18 +00:00
module right ( x = 0 ) translate ( [ x , 0 , 0 ] ) children ( ) ;
2019-12-04 10:24:34 +00:00
function right ( x = 0 , p = undef ) = move ( [ x , 0 , 0 ] , p = p ) ;
2019-03-23 04:13:18 +00:00
2019-08-22 06:54:36 +00:00
// Function&Module: fwd()
2019-03-23 04:13:18 +00:00
//
2019-08-22 06:54:36 +00:00
// Usage: As Module
2019-03-23 04:13:18 +00:00
// fwd(y) ...
2019-08-22 06:54:36 +00:00
// Usage: Translate Points
// pts = fwd(y, p);
// Usage: Get Translation Matrix
// mat = fwd(y);
//
// Description:
// If called as a module, moves/translates all children forward (in the Y- direction) by the given amount.
// If called as a function with the `p` argument, returns the translated point or list of points.
// If called as a function without the `p` argument, returns an affine3d translation matrix.
2019-03-23 04:13:18 +00:00
//
// Arguments:
// y = Scalar amount to move forward.
2019-08-22 06:54:36 +00:00
// p = Either a point, or a list of points to be translated when used as a function.
2019-03-23 04:13:18 +00:00
//
2017-08-30 00:00:16 +00:00
// Example:
2019-03-23 04:13:18 +00:00
// #sphere(d=10);
// fwd(20) sphere(d=10);
2019-08-22 06:54:36 +00:00
//
// Example(NORENDER):
// pt1 = fwd(20, p=[23,42]); // Returns: [23,22]
// pt2 = fwd(20, p=[15,23,42]); // Returns: [15,3,42]
// pt3 = fwd(3, p=[[1,2,3],[4,5,6]]); // Returns: [[1,-1,3], [4,2,6]]
// mat3d = fwd(4); // Returns: [[1,0,0,0],[0,1,0,-4],[0,0,1,0],[0,0,0,1]]
2019-03-23 04:13:18 +00:00
module fwd ( y = 0 ) translate ( [ 0 , - y , 0 ] ) children ( ) ;
2019-12-04 10:24:34 +00:00
function fwd ( y = 0 , p = undef ) = move ( [ 0 , - y , 0 ] , p = p ) ;
2019-03-23 04:13:18 +00:00
2019-08-22 06:54:36 +00:00
// Function&Module: back()
2019-03-23 04:13:18 +00:00
//
2019-08-22 06:54:36 +00:00
// Usage: As Module
2019-03-23 04:13:18 +00:00
// back(y) ...
2019-08-22 06:54:36 +00:00
// Usage: Translate Points
// pts = back(y, p);
// Usage: Get Translation Matrix
// mat = back(y);
//
// Description:
// If called as a module, moves/translates all children back (in the Y+ direction) by the given amount.
// If called as a function with the `p` argument, returns the translated point or list of points.
// If called as a function without the `p` argument, returns an affine3d translation matrix.
2019-03-23 04:13:18 +00:00
//
// Arguments:
// y = Scalar amount to move back.
2019-08-22 06:54:36 +00:00
// p = Either a point, or a list of points to be translated when used as a function.
2019-03-23 04:13:18 +00:00
//
2017-08-30 00:00:16 +00:00
// Example:
2019-03-23 04:13:18 +00:00
// #sphere(d=10);
// back(20) sphere(d=10);
2019-08-22 06:54:36 +00:00
//
// Example(NORENDER):
// pt1 = back(20, p=[23,42]); // Returns: [23,62]
// pt2 = back(20, p=[15,23,42]); // Returns: [15,43,42]
// pt3 = back(3, p=[[1,2,3],[4,5,6]]); // Returns: [[1,5,3], [4,8,6]]
// mat3d = back(4); // Returns: [[1,0,0,0],[0,1,0,4],[0,0,1,0],[0,0,0,1]]
2019-03-23 04:13:18 +00:00
module back ( y = 0 ) translate ( [ 0 , y , 0 ] ) children ( ) ;
2019-12-04 10:24:34 +00:00
function back ( y = 0 , p = undef ) = move ( [ 0 , y , 0 ] , p = p ) ;
2019-03-23 04:13:18 +00:00
2019-08-22 06:54:36 +00:00
// Function&Module: down()
2019-03-23 04:13:18 +00:00
//
2019-08-22 06:54:36 +00:00
// Usage: As Module
2019-03-23 04:13:18 +00:00
// down(z) ...
2019-08-22 06:54:36 +00:00
// Usage: Translate Points
// pts = down(z, p);
// Usage: Get Translation Matrix
// mat = down(z);
//
// Description:
// If called as a module, moves/translates all children down (in the Z- direction) by the given amount.
// If called as a function with the `p` argument, returns the translated point or list of points.
// If called as a function without the `p` argument, returns an affine3d translation matrix.
2019-03-23 04:13:18 +00:00
//
// Arguments:
// z = Scalar amount to move down.
2019-08-22 06:54:36 +00:00
// p = Either a point, or a list of points to be translated when used as a function.
2019-03-23 04:13:18 +00:00
//
2017-08-30 00:00:16 +00:00
// Example:
2019-03-23 04:13:18 +00:00
// #sphere(d=10);
// down(20) sphere(d=10);
2019-08-22 06:54:36 +00:00
//
// Example(NORENDER):
// pt1 = down(20, p=[15,23,42]); // Returns: [15,23,22]
// pt2 = down(3, p=[[1,2,3],[4,5,6]]); // Returns: [[1,2,0], [4,5,3]]
// mat3d = down(4); // Returns: [[1,0,0,0],[0,1,0,0],[0,0,1,-4],[0,0,0,1]]
2019-03-23 04:13:18 +00:00
module down ( z = 0 ) translate ( [ 0 , 0 , - z ] ) children ( ) ;
2019-12-04 10:24:34 +00:00
function down ( z = 0 , p = undef ) = move ( [ 0 , 0 , - z ] , p = p ) ;
2019-03-23 04:13:18 +00:00
2019-08-22 06:54:36 +00:00
// Function&Module: up()
2019-03-23 04:13:18 +00:00
//
2019-08-22 06:54:36 +00:00
// Usage: As Module
2019-03-23 04:13:18 +00:00
// up(z) ...
2019-08-22 06:54:36 +00:00
// Usage: Translate Points
// pts = up(z, p);
// Usage: Get Translation Matrix
// mat = up(z);
//
// Description:
// If called as a module, moves/translates all children up (in the Z+ direction) by the given amount.
// If called as a function with the `p` argument, returns the translated point or list of points.
// If called as a function without the `p` argument, returns an affine3d translation matrix.
2019-03-23 04:13:18 +00:00
//
// Arguments:
// z = Scalar amount to move up.
2019-08-22 06:54:36 +00:00
// p = Either a point, or a list of points to be translated when used as a function.
2019-03-23 04:13:18 +00:00
//
// Example:
// #sphere(d=10);
// up(20) sphere(d=10);
2019-08-22 06:54:36 +00:00
//
// Example(NORENDER):
// pt1 = up(20, p=[15,23,42]); // Returns: [15,23,62]
// pt2 = up(3, p=[[1,2,3],[4,5,6]]); // Returns: [[1,2,6], [4,5,9]]
// mat3d = up(4); // Returns: [[1,0,0,0],[0,1,0,0],[0,0,1,4],[0,0,0,1]]
2019-03-23 04:13:18 +00:00
module up ( z = 0 ) translate ( [ 0 , 0 , z ] ) children ( ) ;
2017-08-30 00:00:16 +00:00
2019-12-04 10:24:34 +00:00
function up ( z = 0 , p = undef ) = move ( [ 0 , 0 , z ] , p = p ) ;
2019-08-22 06:54:36 +00:00
2017-08-30 00:00:16 +00:00
2019-03-23 04:13:18 +00:00
//////////////////////////////////////////////////////////////////////
// Section: Rotations
//////////////////////////////////////////////////////////////////////
2017-08-30 00:00:16 +00:00
2019-05-27 01:14:26 +00:00
// Function&Module: rot()
2019-03-23 04:13:18 +00:00
//
// Usage:
// rot(a, [cp], [reverse]) ...
// rot([X,Y,Z], [cp], [reverse]) ...
// rot(a, v, [cp], [reverse]) ...
// rot(from, to, [a], [reverse]) ...
//
2019-12-04 10:24:34 +00:00
// Description:
// This is a shorthand version of the built-in `rotate()`, and operates similarly, with a few additional capabilities.
// You can specify the rotation to perform in one of several ways:
// * `rot(30)` or `rot(a=30)` rotates 30 degrees around the Z axis.
// * `rot([20,30,40])` or `rot(a=[20,30,40])` rotates 20 degrees around the X axis, then 30 degrees around the Y axis, then 40 degrees around the Z axis.
// * `rot(30, [1,1,0])` or `rot(a=30, v=[1,1,0])` rotates 30 degrees around the axis vector `[1,1,0]`.
// * `rot(from=[0,0,1], to=[1,0,0])` rotates the top towards the right, similar to `rot(a=90,v=[0,1,0]`.
// * `rot(from=[0,0,1], to=[1,1,0], a=45)` rotates 45 degrees around the Z axis, then rotates the top towards the back-right. Similar to `rot(a=90,v=[-1,1,0])`
// If the `cp` centerpoint argument is given, then rotations are performed around that centerpoint.
// If the `reverse` argument is true, then the rotations performed will be exactly reversed.
// The behavior and return value varies depending on how `rot()` is called:
// * Called as a module, rotates all children.
// * Called as a function with a `p` argument containing a point, returns the rotated point.
// * Called as a function with a `p` argument containing a list of points, returns the list of rotated points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the rotated patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the rotated VNF.
// * Called as a function without a `p` argument, and `planar` is true, returns the affine2d rotational matrix.
// * Called as a function without a `p` argument, and `planar` is false, returns the affine3d rotational matrix.
//
2019-03-23 04:13:18 +00:00
// Arguments:
// a = Scalar angle or vector of XYZ rotation angles to rotate by, in degrees.
2019-04-19 06:32:17 +00:00
// v = vector for the axis of rotation. Default: [0,0,1] or UP
2019-01-25 21:47:14 +00:00
// cp = centerpoint to rotate around. Default: [0,0,0]
2019-03-23 04:13:18 +00:00
// from = Starting vector for vector-based rotations.
// to = Target vector for vector-based rotations.
// reverse = If true, exactly reverses the rotation, including axis rotation ordering. Default: false
2019-05-27 01:14:26 +00:00
// planar = If called as a function, this specifies if you want to work with 2D points.
// p = If called as a function, this contains a point or list of points to rotate.
2019-03-23 04:13:18 +00:00
//
2019-01-25 21:47:14 +00:00
// Example:
2019-03-23 04:13:18 +00:00
// #cube([2,4,9]);
2019-01-25 21:47:14 +00:00
// rot([30,60,0], cp=[0,0,9]) cube([2,4,9]);
2019-03-23 04:13:18 +00:00
//
// Example:
// #cube([2,4,9]);
2019-01-25 21:47:14 +00:00
// rot(30, v=[1,1,0], cp=[0,0,9]) cube([2,4,9]);
2019-03-23 04:13:18 +00:00
//
2019-02-27 11:52:59 +00:00
// Example:
2019-03-23 04:13:18 +00:00
// #cube([2,4,9]);
2019-04-19 06:32:17 +00:00
// rot(from=UP, to=LEFT+BACK) cube([2,4,9]);
2019-12-04 10:24:34 +00:00
//
// Example(2D):
// path = square([50,30], center=true);
// #stroke(path, closed=true);
// stroke(rot(30,p=path), closed=true);
2019-03-23 04:13:18 +00:00
module rot ( a = 0 , v = undef , cp = undef , from = undef , to = undef , reverse = false )
{
2019-04-20 00:02:17 +00:00
if ( ! is_undef ( cp ) ) {
2019-03-23 04:13:18 +00:00
translate ( cp ) rot ( a = a , v = v , from = from , to = to , reverse = reverse ) translate ( - cp ) children ( ) ;
2019-04-20 00:02:17 +00:00
} else if ( ! is_undef ( from ) ) {
assert ( ! is_undef ( to ) , "`from` and `to` should be used together." ) ;
2019-05-12 10:29:08 +00:00
from = point3d ( from ) ;
to = point3d ( to ) ;
2019-04-01 01:43:54 +00:00
axis = vector_axis ( from , to ) ;
ang = vector_angle ( from , to ) ;
if ( ang < 0.0001 && a = = 0 ) {
2019-03-23 04:13:18 +00:00
children ( ) ; // May be slightly faster?
2019-04-01 01:43:54 +00:00
} else if ( reverse ) {
rotate ( a = - ang , v = axis ) rotate ( a = - a , v = from ) children ( ) ;
2019-03-23 04:13:18 +00:00
} else {
2019-04-01 01:43:54 +00:00
rotate ( a = ang , v = axis ) rotate ( a = a , v = from ) children ( ) ;
2019-03-23 04:13:18 +00:00
}
} else if ( a = = 0 ) {
2019-02-27 11:52:59 +00:00
children ( ) ; // May be slightly faster?
2019-03-23 04:13:18 +00:00
} else if ( reverse ) {
2019-04-20 00:02:17 +00:00
if ( ! is_undef ( v ) ) {
2019-03-23 04:13:18 +00:00
rotate ( a = - a , v = v ) children ( ) ;
2019-04-20 00:02:17 +00:00
} else if ( is_num ( a ) ) {
2019-03-23 04:13:18 +00:00
rotate ( - a ) children ( ) ;
} else {
rotate ( [ - a [ 0 ] , 0 , 0 ] ) rotate ( [ 0 , - a [ 1 ] , 0 ] ) rotate ( [ 0 , 0 , - a [ 2 ] ] ) children ( ) ;
2019-02-27 11:52:59 +00:00
}
2019-03-23 04:13:18 +00:00
} else {
rotate ( a = a , v = v ) children ( ) ;
2019-02-27 11:52:59 +00:00
}
}
2019-05-27 01:14:26 +00:00
function rot ( a = 0 , v = undef , cp = undef , from = undef , to = undef , reverse = false , p = undef , planar = false ) =
assert ( is_undef ( from ) = = is_undef ( to ) , "from and to must be specified together." )
let ( rev = reverse ? - 1 : 1 )
is_undef ( p ) ? (
is_undef ( cp ) ? (
planar ? (
is_undef ( from ) ? affine2d_zrot ( a * rev ) :
affine2d_zrot ( vector_angle ( from , to ) * sign ( vector_axis ( from , to ) [ 2 ] ) * rev )
) : (
! is_undef ( from ) ? affine3d_rot_by_axis ( vector_axis ( from , to ) , vector_angle ( from , to ) * rev ) :
! is_undef ( v ) ? affine3d_rot_by_axis ( v , a * rev ) :
is_num ( a ) ? affine3d_zrot ( a * rev ) :
reverse ? affine3d_chain ( [ affine3d_zrot ( - a . z ) , affine3d_yrot ( - a . y ) , affine3d_xrot ( - a . x ) ] ) :
affine3d_chain ( [ affine3d_xrot ( a . x ) , affine3d_yrot ( a . y ) , affine3d_zrot ( a . z ) ] )
)
) : (
planar ? (
affine2d_chain ( [
move ( - cp ) ,
rot ( a = a , v = v , from = from , to = to , reverse = reverse , planar = true ) ,
move ( cp )
] )
) : (
affine3d_chain ( [
move ( - cp ) ,
rot ( a = a , v = v , from = from , to = to , reverse = reverse ) ,
move ( cp )
] )
)
)
) : (
2019-12-04 10:24:34 +00:00
assert ( is_list ( p ) )
is_num ( p . x ) ? (
2019-05-27 01:14:26 +00:00
rot ( a = a , v = v , cp = cp , from = from , to = to , reverse = reverse , p = [ p ] , planar = planar ) [ 0 ]
2019-12-04 10:24:34 +00:00
) : is_vnf ( p ) ? (
[ rot ( a = a , v = v , cp = cp , from = from , to = to , reverse = reverse , p = p . x , planar = planar ) , p . y ]
) : is_list ( p . x ) && is_list ( p . x . x ) ? (
[ for ( l = p ) rot ( a = a , v = v , cp = cp , from = from , to = to , reverse = reverse , p = l , planar = planar ) ]
2019-05-27 01:14:26 +00:00
) : (
2019-07-11 01:52:33 +00:00
(
( planar || ( p ! = [ ] && len ( p [ 0 ] ) = = 2 ) ) && ! (
( is_vector ( a ) && norm ( point2d ( a ) ) > 0 ) ||
( ! is_undef ( v ) && norm ( point2d ( v ) ) > 0 && ! approx ( a , 0 ) ) ||
( ! is_undef ( from ) && ! approx ( from , to ) && ! ( abs ( from . z ) > 0 || abs ( to . z ) ) ) ||
( ! is_undef ( from ) && approx ( from , to ) && norm ( point2d ( from ) ) > 0 && a ! = 0 )
)
) ? (
2019-06-12 02:28:04 +00:00
is_undef ( from ) ? rotate_points2d ( p , a = a * rev , cp = cp ) : (
2019-07-11 01:52:33 +00:00
approx ( from , to ) && approx ( a , 0 ) ? p :
2019-06-12 02:28:04 +00:00
rotate_points2d ( p , a = vector_angle ( from , to ) * sign ( vector_axis ( from , to ) [ 2 ] ) * rev , cp = cp )
2019-05-29 23:27:35 +00:00
)
2019-05-27 01:14:26 +00:00
) : (
rotate_points3d ( p , a = a , v = v , cp = ( is_undef ( cp ) ? [ 0 , 0 , 0 ] : cp ) , from = from , to = to , reverse = reverse )
)
)
) ;
2019-02-27 11:52:59 +00:00
2019-07-11 01:52:33 +00:00
// Function&Module: xrot()
2019-03-23 04:13:18 +00:00
//
2019-07-11 01:52:33 +00:00
// Usage: As Module
2019-03-23 04:13:18 +00:00
// xrot(a, [cp]) ...
2019-07-11 01:52:33 +00:00
// Usage: Rotate Points
// rotated = xrot(a, p, [cp]);
// Usage: Get Rotation Matrix
// mat = xrot(a, [cp]);
2019-03-23 04:13:18 +00:00
//
2019-12-04 10:24:34 +00:00
// Description:
// Rotates around the X axis by the given number of degrees. If `cp` is given, rotations are performed around that centerpoint.
// * Called as a module, rotates all children.
// * Called as a function with a `p` argument containing a point, returns the rotated point.
// * Called as a function with a `p` argument containing a list of points, returns the list of rotated points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the rotated patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the rotated VNF.
// * Called as a function without a `p` argument, and `planar` is true, returns the affine2d rotational matrix.
// * Called as a function without a `p` argument, and `planar` is false, returns the affine3d rotational matrix.
//
2019-03-23 04:13:18 +00:00
// Arguments:
2018-12-10 20:11:34 +00:00
// a = angle to rotate by in degrees.
// cp = centerpoint to rotate around. Default: [0,0,0]
2019-07-11 01:52:33 +00:00
// p = If called as a function, this contains a point or list of points to rotate.
2019-03-23 04:13:18 +00:00
//
2017-08-30 00:00:16 +00:00
// Example:
2019-03-23 04:13:18 +00:00
// #cylinder(h=50, r=10, center=true);
// xrot(90) cylinder(h=50, r=10, center=true);
module xrot ( a = 0 , cp = undef )
{
2019-02-27 11:52:59 +00:00
if ( a = = 0 ) {
children ( ) ; // May be slightly faster?
2019-04-20 00:02:17 +00:00
} else if ( ! is_undef ( cp ) ) {
2018-12-10 20:11:34 +00:00
translate ( cp ) rotate ( [ a , 0 , 0 ] ) translate ( - cp ) children ( ) ;
2019-03-23 04:13:18 +00:00
} else {
rotate ( [ a , 0 , 0 ] ) children ( ) ;
2018-12-10 20:11:34 +00:00
}
}
2017-08-30 00:00:16 +00:00
2019-07-11 01:52:33 +00:00
function xrot ( a = 0 , cp = undef , p = undef ) = rot ( [ a , 0 , 0 ] , cp = cp , p = p ) ;
2017-08-30 00:00:16 +00:00
2019-07-11 01:52:33 +00:00
// Function&Module: yrot()
2019-03-23 04:13:18 +00:00
//
2019-07-11 01:52:33 +00:00
// Usage: As Module
2019-03-23 04:13:18 +00:00
// yrot(a, [cp]) ...
2019-07-11 01:52:33 +00:00
// Usage: Rotate Points
// rotated = yrot(a, p, [cp]);
// Usage: Get Rotation Matrix
// mat = yrot(a, [cp]);
2019-03-23 04:13:18 +00:00
//
2019-12-04 10:24:34 +00:00
// Description:
// Rotates around the Y axis by the given number of degrees. If `cp` is given, rotations are performed around that centerpoint.
// * Called as a module, rotates all children.
// * Called as a function with a `p` argument containing a point, returns the rotated point.
// * Called as a function with a `p` argument containing a list of points, returns the list of rotated points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the rotated patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the rotated VNF.
// * Called as a function without a `p` argument, and `planar` is true, returns the affine2d rotational matrix.
// * Called as a function without a `p` argument, and `planar` is false, returns the affine3d rotational matrix.
//
2019-03-23 04:13:18 +00:00
// Arguments:
2018-12-10 20:11:34 +00:00
// a = angle to rotate by in degrees.
// cp = centerpoint to rotate around. Default: [0,0,0]
2019-07-11 01:52:33 +00:00
// p = If called as a function, this contains a point or list of points to rotate.
2019-03-23 04:13:18 +00:00
//
2017-08-30 00:00:16 +00:00
// Example:
2019-03-23 04:13:18 +00:00
// #cylinder(h=50, r=10, center=true);
// yrot(90) cylinder(h=50, r=10, center=true);
module yrot ( a = 0 , cp = undef )
{
2019-02-27 11:52:59 +00:00
if ( a = = 0 ) {
children ( ) ; // May be slightly faster?
2019-04-20 00:02:17 +00:00
} else if ( ! is_undef ( cp ) ) {
2018-12-10 20:11:34 +00:00
translate ( cp ) rotate ( [ 0 , a , 0 ] ) translate ( - cp ) children ( ) ;
2019-03-23 04:13:18 +00:00
} else {
rotate ( [ 0 , a , 0 ] ) children ( ) ;
2018-12-10 20:11:34 +00:00
}
}
2017-08-30 00:00:16 +00:00
2019-07-11 01:52:33 +00:00
function yrot ( a = 0 , cp = undef , p = undef ) = rot ( [ 0 , a , 0 ] , cp = cp , p = p ) ;
2017-08-30 00:00:16 +00:00
2019-07-11 01:52:33 +00:00
// Function&Module: zrot()
2019-03-23 04:13:18 +00:00
//
2019-07-11 01:52:33 +00:00
// Usage: As Module
2019-03-23 04:13:18 +00:00
// zrot(a, [cp]) ...
2019-07-11 01:52:33 +00:00
// Usage: Rotate Points
// rotated = zrot(a, p, [cp]);
// Usage: Get Rotation Matrix
// mat = zrot(a, [cp]);
2019-03-23 04:13:18 +00:00
//
2019-12-04 10:24:34 +00:00
// Description:
// Rotates around the Z axis by the given number of degrees. If `cp` is given, rotations are performed around that centerpoint.
// * Called as a module, rotates all children.
// * Called as a function with a `p` argument containing a point, returns the rotated point.
// * Called as a function with a `p` argument containing a list of points, returns the list of rotated points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the rotated patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the rotated VNF.
// * Called as a function without a `p` argument, and `planar` is true, returns the affine2d rotational matrix.
// * Called as a function without a `p` argument, and `planar` is false, returns the affine3d rotational matrix.
//
2019-03-23 04:13:18 +00:00
// Arguments:
2018-12-10 20:11:34 +00:00
// a = angle to rotate by in degrees.
// cp = centerpoint to rotate around. Default: [0,0,0]
2019-07-11 01:52:33 +00:00
// p = If called as a function, this contains a point or list of points to rotate.
2019-03-23 04:13:18 +00:00
//
2017-08-30 00:00:16 +00:00
// Example:
2019-03-23 04:13:18 +00:00
// #cube(size=[60,20,40], center=true);
// zrot(90) cube(size=[60,20,40], center=true);
module zrot ( a = 0 , cp = undef )
{
2019-02-27 11:52:59 +00:00
if ( a = = 0 ) {
children ( ) ; // May be slightly faster?
2019-04-20 00:02:17 +00:00
} else if ( ! is_undef ( cp ) ) {
2019-02-27 11:52:59 +00:00
translate ( cp ) rotate ( a ) translate ( - cp ) children ( ) ;
} else {
2019-03-23 04:13:18 +00:00
rotate ( a ) children ( ) ;
2018-12-10 20:11:34 +00:00
}
}
2019-07-11 01:52:33 +00:00
function zrot ( a = 0 , cp = undef , p = undef ) = rot ( a , cp = cp , p = p ) ;
2017-08-30 00:00:16 +00:00
2019-03-23 04:13:18 +00:00
//////////////////////////////////////////////////////////////////////
// Section: Scaling and Mirroring
//////////////////////////////////////////////////////////////////////
2017-08-30 00:00:16 +00:00
2019-05-27 01:14:26 +00:00
// Function&Module: scale()
// Usage: As Module
2019-06-12 05:26:09 +00:00
// scale(SCALAR) ...
2019-05-27 01:14:26 +00:00
// scale([X,Y,Z]) ...
// Usage: Scale Points
2019-12-04 10:24:34 +00:00
// pts = scale(v, p);
2019-05-27 01:14:26 +00:00
// Usage: Get Scaling Matrix
2019-12-04 10:24:34 +00:00
// mat = scale(v);
2019-05-27 01:14:26 +00:00
// Description:
2019-12-04 10:24:34 +00:00
// Scales by the [X,Y,Z] scaling factors given in `v`. If `v` is given as a scalar number, all axes are scaled uniformly by that amount.
// * Called as the built-in module, scales all children.
// * Called as a function with a point in the `p` argument, returns the scaled point.
// * Called as a function with a list of points in the `p` argument, returns the list of scaled points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the scaled patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the scaled VNF.
// * Called as a function without a `p` argument, and a 2D list of scaling factors in `v`, returns an affine2d scaling matrix.
// * Called as a function without a `p` argument, and a 3D list of scaling factors in `v`, returns an affine3d scaling matrix.
2019-05-27 01:14:26 +00:00
// Arguments:
2019-12-04 10:24:34 +00:00
// v = Either a numeric uniform scaling factor, or a list of [X,Y,Z] scaling factors. Default: 1
2019-05-27 01:14:26 +00:00
// p = If called as a function, the point or list of points to scale.
// Example(NORENDER):
2019-06-12 05:26:09 +00:00
// pt1 = scale(3, p=[3,1,4]); // Returns: [9,3,12]
// pt2 = scale([2,3,4], p=[3,1,4]); // Returns: [6,3,16]
2019-05-27 01:14:26 +00:00
// pt3 = scale([2,3,4], p=[[1,2,3],[4,5,6]]); // Returns: [[2,6,12], [8,15,24]]
// mat2d = scale([2,3]); // Returns: [[2,0,0],[0,3,0],[0,0,1]]
// mat3d = scale([2,3,4]); // Returns: [[2,0,0,0],[0,3,0,0],[0,0,4,0],[0,0,0,1]]
2019-07-11 01:52:33 +00:00
// Example(2D):
// path = circle(d=50,$fn=12);
2019-12-04 10:24:34 +00:00
// #stroke(path,closed=true);
// stroke(scale([1.5,3],p=path),closed=true);
function scale ( v = 1 , p = undef ) =
let ( v = is_num ( v ) ? [ v , v , v ] : v )
2019-05-27 01:14:26 +00:00
is_undef ( p ) ? (
2019-12-04 10:24:34 +00:00
len ( v ) = = 2 ? affine2d_scale ( v ) : affine3d_scale ( point3d ( v ) )
2019-05-27 01:14:26 +00:00
) : (
2019-12-04 10:24:34 +00:00
assert ( is_list ( p ) )
is_num ( p . x ) ? vmul ( p , v ) :
2019-12-04 10:48:02 +00:00
is_vnf ( p ) ? let ( inv = product ( [ for ( x = v ) x < 0 ? - 1 : 1 ] ) ) [
scale ( v = v , p = p . x ) ,
inv >= 0 ? p . y : [ for ( l = p . y ) reverse ( l ) ]
] :
2019-12-04 10:24:34 +00:00
[ for ( l = p ) is_vector ( l ) ? vmul ( l , v ) : scale ( v = v , p = l ) ]
2019-05-27 01:14:26 +00:00
) ;
2019-07-11 01:52:33 +00:00
// Function&Module: xscale()
2019-03-23 04:13:18 +00:00
//
2019-12-04 10:24:34 +00:00
//
2019-07-11 01:52:33 +00:00
// Usage: As Module
2019-03-23 04:13:18 +00:00
// xscale(x) ...
2019-07-11 01:52:33 +00:00
// Usage: Scale Points
// scaled = xscale(x, p);
2019-12-04 10:24:34 +00:00
// Usage: Get Affine Matrix
// mat = xscale(x);
2019-07-11 01:52:33 +00:00
//
// Description:
2019-12-04 10:24:34 +00:00
// Scales along the X axis by the scaling factor `x`.
// * Called as the built-in module, scales all children.
// * Called as a function with a point in the `p` argument, returns the scaled point.
// * Called as a function with a list of points in the `p` argument, returns the list of scaled points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the scaled patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the scaled VNF.
// * Called as a function without a `p` argument, and a 2D list of scaling factors in `v`, returns an affine2d scaling matrix.
// * Called as a function without a `p` argument, and a 3D list of scaling factors in `v`, returns an affine3d scaling matrix.
2019-03-23 04:13:18 +00:00
//
// Arguments:
2019-07-11 01:52:33 +00:00
// x = Factor to scale by, along the X axis.
// p = A point or path to scale, when called as a function.
// planar = If true, and `p` is not given, then the matrix returned is an affine2d matrix instead of an affine3d matrix.
2019-03-23 04:13:18 +00:00
//
2019-07-11 01:52:33 +00:00
// Example: As Module
2019-03-23 04:13:18 +00:00
// xscale(3) sphere(r=10);
2019-07-11 01:52:33 +00:00
//
// Example(2D): Scaling Points
// path = circle(d=50,$fn=12);
2019-12-04 10:48:02 +00:00
// #stroke(path,closed=true);
// stroke(xscale(2,p=path),closed=true);
2019-07-11 01:52:33 +00:00
module xscale ( x = 1 ) scale ( [ x , 1 , 1 ] ) children ( ) ;
2019-03-23 04:13:18 +00:00
2019-07-11 01:52:33 +00:00
function xscale ( x = 1 , p = undef , planar = false ) = ( planar || ( ! is_undef ( p ) && len ( p ) = = 2 ) ) ? scale ( [ x , 1 ] , p = p ) : scale ( [ x , 1 , 1 ] , p = p ) ;
2019-03-23 04:13:18 +00:00
2019-07-11 01:52:33 +00:00
// Function&Module: yscale()
2019-03-23 04:13:18 +00:00
//
2019-12-04 10:24:34 +00:00
// Usage: As Module
2019-03-23 04:13:18 +00:00
// yscale(y) ...
2019-12-04 10:24:34 +00:00
// Usage: Scale Points
2019-07-11 01:52:33 +00:00
// scaled = yscale(y, p);
2019-12-04 10:24:34 +00:00
// Usage: Get Affine Matrix
// mat = yscale(y);
//
// Description:
// Scales along the Y axis by the scaling factor `y`.
// * Called as the built-in module, scales all children.
// * Called as a function with a point in the `p` argument, returns the scaled point.
// * Called as a function with a list of points in the `p` argument, returns the list of scaled points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the scaled patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the scaled VNF.
// * Called as a function without a `p` argument, and a 2D list of scaling factors in `v`, returns an affine2d scaling matrix.
// * Called as a function without a `p` argument, and a 3D list of scaling factors in `v`, returns an affine3d scaling matrix.
2019-03-23 04:13:18 +00:00
//
// Arguments:
2019-07-11 01:52:33 +00:00
// y = Factor to scale by, along the Y axis.
// p = A point or path to scale, when called as a function.
// planar = If true, and `p` is not given, then the matrix returned is an affine2d matrix instead of an affine3d matrix.
2019-03-23 04:13:18 +00:00
//
2019-07-11 01:52:33 +00:00
// Example: As Module
2019-03-23 04:13:18 +00:00
// yscale(3) sphere(r=10);
2019-07-11 01:52:33 +00:00
//
// Example(2D): Scaling Points
// path = circle(d=50,$fn=12);
2019-12-04 10:48:02 +00:00
// #stroke(path,closed=true);
// stroke(yscale(2,p=path),closed=true);
2019-07-11 01:52:33 +00:00
module yscale ( y = 1 ) scale ( [ 1 , y , 1 ] ) children ( ) ;
function yscale ( y = 1 , p = undef , planar = false ) = ( planar || ( ! is_undef ( p ) && len ( p ) = = 2 ) ) ? scale ( [ 1 , y ] , p = p ) : scale ( [ 1 , y , 1 ] , p = p ) ;
2019-03-23 04:13:18 +00:00
2019-07-11 01:52:33 +00:00
// Function&Module: zscale()
2019-03-23 04:13:18 +00:00
//
2019-12-04 10:24:34 +00:00
// Usage: As Module
2019-03-23 04:13:18 +00:00
// zscale(z) ...
2019-12-04 10:24:34 +00:00
// Usage: Scale Points
// scaled = zscale(z, p);
// Usage: Get Affine Matrix
// mat = zscale(z);
//
// Description:
// Scales along the Z axis by the scaling factor `z`.
// * Called as the built-in module, scales all children.
// * Called as a function with a point in the `p` argument, returns the scaled point.
// * Called as a function with a list of points in the `p` argument, returns the list of scaled points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the scaled patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the scaled VNF.
// * Called as a function without a `p` argument, and a 2D list of scaling factors in `v`, returns an affine2d scaling matrix.
// * Called as a function without a `p` argument, and a 3D list of scaling factors in `v`, returns an affine3d scaling matrix.
2019-03-23 04:13:18 +00:00
//
// Arguments:
2019-07-11 01:52:33 +00:00
// z = Factor to scale by, along the Z axis.
// p = A point or path to scale, when called as a function.
// planar = If true, and `p` is not given, then the matrix returned is an affine2d matrix instead of an affine3d matrix.
2019-03-23 04:13:18 +00:00
//
2019-07-11 01:52:33 +00:00
// Example: As Module
2019-03-23 04:13:18 +00:00
// zscale(3) sphere(r=10);
2019-07-11 01:52:33 +00:00
//
// Example: Scaling Points
// path = xrot(90,p=circle(d=50,$fn=12));
// #trace_polyline(path);
// trace_polyline(zscale(2,p=path));
module zscale ( z = 1 ) scale ( [ 1 , 1 , z ] ) children ( ) ;
function zscale ( z = 1 , p = undef ) = scale ( [ 1 , 1 , z ] , p = p ) ;
2019-03-23 04:13:18 +00:00
2019-12-04 10:24:34 +00:00
// Function&Module: mirror()
// Usage: As Module
// mirror(v) ...
// Usage: As Function
// pt = mirror(v, p);
// Usage: Get Reflection/Mirror Matrix
// mat = mirror(v);
2019-03-23 04:13:18 +00:00
// Description:
2019-12-04 10:24:34 +00:00
// Mirrors/reflects across the plane or line whose normal vector is given in `v`.
// * Called as the built-in module, mirrors all children across the line/plane.
// * Called as a function with a point in the `p` argument, returns the point mirrored across the line/plane.
// * Called as a function with a list of points in the `p` argument, returns the list of points, with each one mirrored across the line/plane.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the mirrored patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the mirrored VNF.
// * Called as a function without a `p` argument, and with a 2D normal vector `v`, returns the affine2d 3x3 mirror matrix.
// * Called as a function without a `p` argument, and with a 3D normal vector `v`, returns the affine3d 4x4 mirror matrix.
// Arguments:
// v = The normal vector of the line or plane to mirror across.
// p = If called as a function, the point or list of points to scale.
// Example:
// n = [1,0,0];
// module obj() right(20) rotate([0,15,-15]) cube([40,30,20]);
// obj();
// mirror(n) obj();
// rot(a=atan2(n.y,n.x),from=UP,to=n) {
// color("red") anchor_arrow(s=20, flag=false);
// color("#7777") cube([75,75,0.1], center=true);
// }
// Example:
// n = [1,1,0];
// module obj() right(20) rotate([0,15,-15]) cube([40,30,20]);
// obj();
// mirror(n) obj();
// rot(a=atan2(n.y,n.x),from=UP,to=n) {
// color("red") anchor_arrow(s=20, flag=false);
// color("#7777") cube([75,75,0.1], center=true);
// }
// Example:
// n = [1,1,1];
// module obj() right(20) rotate([0,15,-15]) cube([40,30,20]);
// obj();
// mirror(n) obj();
// rot(a=atan2(n.y,n.x),from=UP,to=n) {
// color("red") anchor_arrow(s=20, flag=false);
// color("#7777") cube([75,75,0.1], center=true);
// }
// Example(2D):
// n = [0,1];
// path = rot(30, p=square([50,30]));
// color("gray") rot(from=[0,1],to=n) stroke([[-60,0],[60,0]]);
// color("red") stroke([[0,0],10*n],endcap2="arrow2");
// #stroke(path,closed=true);
// stroke(mirror(n, p=path),closed=true);
// Example(2D):
// n = [1,1];
// path = rot(30, p=square([50,30]));
// color("gray") rot(from=[0,1],to=n) stroke([[-60,0],[60,0]]);
// color("red") stroke([[0,0],10*n],endcap2="arrow2");
// #stroke(path,closed=true);
// stroke(mirror(n, p=path),closed=true);
function mirror ( v , p ) =
is_undef ( p ) ? (
len ( v ) = = 2 ? affine2d_mirror ( v ) : affine3d_mirror ( v )
) : (
assert ( is_list ( p ) )
is_num ( p . x ) ? p - ( 2 * ( p * v ) / ( v * v ) ) * v :
is_vnf ( p ) ? [ mirror ( v = v , p = p . x ) , [ for ( l = p . y ) reverse ( l ) ] ] :
[ for ( l = p ) mirror ( v = v , p = l ) ]
) ;
// Function&Module: xflip()
2019-03-23 04:13:18 +00:00
//
2019-12-04 10:24:34 +00:00
// Usage: As Module
2019-06-12 05:12:49 +00:00
// xflip([x]) ...
2019-12-04 10:24:34 +00:00
// Usage: As Function
// pt = xflip([x], p);
// Usage: Get Affine Matrix
// pt = xflip([x]);
//
// Description:
// Mirrors/reflects across the origin [0,0,0], along the X axis. If `x` is given, reflects across [x,0,0] instead.
// * Called as the built-in module, mirrors all children across the line/plane.
// * Called as a function with a point in the `p` argument, returns the point mirrored across the line/plane.
// * Called as a function with a list of points in the `p` argument, returns the list of points, with each one mirrored across the line/plane.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the mirrored patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the mirrored VNF.
// * Called as a function without a `p` argument, and with a 2D normal vector `v`, returns the affine2d 3x3 mirror matrix.
// * Called as a function without a `p` argument, and with a 3D normal vector `v`, returns the affine3d 4x4 mirror matrix.
2019-03-23 04:13:18 +00:00
//
// Arguments:
2019-06-12 05:12:49 +00:00
// x = The X coordinate of the plane of reflection. Default: 0
2019-03-23 04:13:18 +00:00
//
// Example:
// xflip() yrot(90) cylinder(d1=10, d2=0, h=20);
// color("blue", 0.25) cube([0.01,15,15], center=true);
// color("red", 0.333) yrot(90) cylinder(d1=10, d2=0, h=20);
//
// Example:
2019-06-12 05:12:49 +00:00
// xflip(x=-5) yrot(90) cylinder(d1=10, d2=0, h=20);
2019-03-23 04:13:18 +00:00
// color("blue", 0.25) left(5) cube([0.01,15,15], center=true);
// color("red", 0.333) yrot(90) cylinder(d1=10, d2=0, h=20);
2019-06-12 05:12:49 +00:00
module xflip ( x = 0 ) translate ( [ x , 0 , 0 ] ) mirror ( [ 1 , 0 , 0 ] ) translate ( [ - x , 0 , 0 ] ) children ( ) ;
2019-03-23 04:13:18 +00:00
2019-12-04 10:24:34 +00:00
function xflip ( x = 0 , p ) =
x = = 0 ? mirror ( [ 1 , 0 , 0 ] , p = p ) :
move ( [ x , 0 , 0 ] , p = mirror ( [ 1 , 0 , 0 ] , p = move ( [ - x , 0 , 0 ] , p = p ) ) ) ;
2019-03-23 04:13:18 +00:00
2019-12-04 10:24:34 +00:00
2020-01-07 00:31:16 +00:00
// Function&Module: yflip()
2019-03-23 04:13:18 +00:00
//
2019-12-04 10:24:34 +00:00
// Usage: As Module
2019-06-12 05:12:49 +00:00
// yflip([y]) ...
2019-12-04 10:24:34 +00:00
// Usage: As Function
// pt = yflip([y], p);
// Usage: Get Affine Matrix
// pt = yflip([y]);
//
// Description:
// Mirrors/reflects across the origin [0,0,0], along the Y axis. If `y` is given, reflects across [0,y,0] instead.
// * Called as the built-in module, mirrors all children across the line/plane.
// * Called as a function with a point in the `p` argument, returns the point mirrored across the line/plane.
// * Called as a function with a list of points in the `p` argument, returns the list of points, with each one mirrored across the line/plane.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the mirrored patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the mirrored VNF.
// * Called as a function without a `p` argument, and with a 2D normal vector `v`, returns the affine2d 3x3 mirror matrix.
// * Called as a function without a `p` argument, and with a 3D normal vector `v`, returns the affine3d 4x4 mirror matrix.
2019-03-23 04:13:18 +00:00
//
// Arguments:
2019-06-12 05:12:49 +00:00
// y = The Y coordinate of the plane of reflection. Default: 0
2019-03-23 04:13:18 +00:00
//
// Example:
// yflip() xrot(90) cylinder(d1=10, d2=0, h=20);
// color("blue", 0.25) cube([15,0.01,15], center=true);
// color("red", 0.333) xrot(90) cylinder(d1=10, d2=0, h=20);
//
2018-11-27 03:55:18 +00:00
// Example:
2019-06-12 05:12:49 +00:00
// yflip(y=5) xrot(90) cylinder(d1=10, d2=0, h=20);
2019-03-23 04:13:18 +00:00
// color("blue", 0.25) back(5) cube([15,0.01,15], center=true);
// color("red", 0.333) xrot(90) cylinder(d1=10, d2=0, h=20);
2019-06-12 05:12:49 +00:00
module yflip ( y = 0 ) translate ( [ 0 , y , 0 ] ) mirror ( [ 0 , 1 , 0 ] ) translate ( [ 0 , - y , 0 ] ) children ( ) ;
2019-03-23 04:13:18 +00:00
2019-12-04 10:24:34 +00:00
function yflip ( y = 0 , p ) =
y = = 0 ? mirror ( [ 0 , 1 , 0 ] , p = p ) :
move ( [ 0 , y , 0 ] , p = mirror ( [ 0 , 1 , 0 ] , p = move ( [ 0 , - y , 0 ] , p = p ) ) ) ;
2019-03-23 04:13:18 +00:00
2019-12-04 10:24:34 +00:00
// Function&Module: zflip()
2019-03-23 04:13:18 +00:00
//
2019-12-04 10:24:34 +00:00
// Usage: As Module
2019-06-12 05:12:49 +00:00
// zflip([z]) ...
2019-12-04 10:24:34 +00:00
// Usage: As Function
// pt = zflip([z], p);
// Usage: Get Affine Matrix
// pt = zflip([z]);
//
// Description:
// Mirrors/reflects across the origin [0,0,0], along the Z axis. If `z` is given, reflects across [0,0,z] instead.
// * Called as the built-in module, mirrors all children across the line/plane.
// * Called as a function with a point in the `p` argument, returns the point mirrored across the line/plane.
// * Called as a function with a list of points in the `p` argument, returns the list of points, with each one mirrored across the line/plane.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the mirrored patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the mirrored VNF.
// * Called as a function without a `p` argument, and with a 2D normal vector `v`, returns the affine2d 3x3 mirror matrix.
// * Called as a function without a `p` argument, and with a 3D normal vector `v`, returns the affine3d 4x4 mirror matrix.
2019-03-23 04:13:18 +00:00
//
// Arguments:
2019-06-12 05:12:49 +00:00
// z = The Z coordinate of the plane of reflection. Default: 0
2019-03-23 04:13:18 +00:00
//
// Example:
// zflip() cylinder(d1=10, d2=0, h=20);
// color("blue", 0.25) cube([15,15,0.01], center=true);
// color("red", 0.333) cylinder(d1=10, d2=0, h=20);
//
// Example:
2019-06-12 05:12:49 +00:00
// zflip(z=-5) cylinder(d1=10, d2=0, h=20);
2019-03-23 04:13:18 +00:00
// color("blue", 0.25) down(5) cube([15,15,0.01], center=true);
// color("red", 0.333) cylinder(d1=10, d2=0, h=20);
2019-06-12 05:12:49 +00:00
module zflip ( z = 0 ) translate ( [ 0 , 0 , z ] ) mirror ( [ 0 , 0 , 1 ] ) translate ( [ 0 , 0 , - z ] ) children ( ) ;
2017-08-30 00:00:16 +00:00
2019-12-04 10:24:34 +00:00
function zflip ( z = 0 , p ) =
z = = 0 ? mirror ( [ 0 , 0 , 1 ] , p = p ) :
move ( [ 0 , 0 , z ] , p = mirror ( [ 0 , 0 , 1 ] , p = move ( [ 0 , 0 , - z ] , p = p ) ) ) ;
2017-08-30 00:00:16 +00:00
2019-03-23 04:13:18 +00:00
//////////////////////////////////////////////////////////////////////
// Section: Skewing
//////////////////////////////////////////////////////////////////////
2017-08-30 00:00:16 +00:00
2019-12-20 05:03:13 +00:00
// Function&Module: skew()
2019-12-04 10:24:34 +00:00
// Usage: As Module
2019-12-20 05:03:13 +00:00
// skew(sxy=0, sxz=0, syx=0, syz=0, szx=0, szy=0) ...
2019-12-04 10:24:34 +00:00
// Usage: As Function
2019-12-20 05:03:13 +00:00
// pts = skew(p, [sxy], [sxz], [syx], [syz], [szx], [szy]);
2019-12-04 10:24:34 +00:00
// Usage: Get Affine Matrix
2019-12-20 05:03:13 +00:00
// mat = skew([sxy], [sxz], [syx], [syz], [szx], [szy], [planar]);
2019-12-04 10:24:34 +00:00
// Description:
2019-12-20 05:03:13 +00:00
// Skews geometry by the given skew factors.
2019-12-04 10:24:34 +00:00
// * Called as the built-in module, skews all children.
// * Called as a function with a point in the `p` argument, returns the skewed point.
// * Called as a function with a list of points in the `p` argument, returns the list of skewed points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the skewed patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the skewed VNF.
// * Called as a function without a `p` argument, and with `planar` true, returns the affine2d 3x3 skew matrix.
// * Called as a function without a `p` argument, and with `planar` false, returns the affine3d 4x4 skew matrix.
2019-12-20 05:03:13 +00:00
// Each skew factor is a multiplier. For example, if `sxy=2`, then it will skew along the X axis by 2x the value of the Y axis.
2019-03-23 04:13:18 +00:00
// Arguments:
2019-12-20 05:03:13 +00:00
// sxy = Skew factor multiplier for skewing along the X axis as you get farther from the Y axis. Default: 0
// sxz = Skew factor multiplier for skewing along the X axis as you get farther from the Z axis. Default: 0
// syx = Skew factor multiplier for skewing along the Y axis as you get farther from the X axis. Default: 0
// syz = Skew factor multiplier for skewing along the Y axis as you get farther from the Z axis. Default: 0
// szx = Skew factor multiplier for skewing along the Z axis as you get farther from the X axis. Default: 0
// szy = Skew factor multiplier for skewing along the Z axis as you get farther from the Y axis. Default: 0
// Example(2D): Skew along the X axis in 2D.
// skew(sxy=0.5) square(40, center=true);
// Example(2D): Skew along the Y axis in 2D.
// skew(syx=0.5) square(40, center=true);
// Example: Skew along the X axis in 3D as a factor of Y coordinate.
// skew(sxy=0.5) cube(40, center=true);
// Example: Skew along the X axis in 3D as a factor of Z coordinate.
// skew(sxz=0.5) cube(40, center=true);
// Example: Skew along the Y axis in 3D as a factor of X coordinate.
// skew(syx=0.5) cube(40, center=true);
// Example: Skew along the Y axis in 3D as a factor of Z coordinate.
// skew(syz=0.5) cube(40, center=true);
// Example: Skew along the Z axis in 3D as a factor of X coordinate.
// skew(szx=0.5) cube(40, center=true);
// Example: Skew along the Z axis in 3D as a factor of Y coordinate.
// skew(szy=0.75) cube(40, center=true);
// Example(FlatSpin): Skew Along Multiple Axes.
// skew(sxy=0.5, syx=0.3, szy=0.75) cube(40, center=true);
// Example(2D): Calling as a 2D Function
// pts = skew(p=square(40,center=true), sxy=0.5);
// color("yellow") stroke(pts, closed=true);
// color("blue") place_copies(pts) circle(d=3, $fn=8);
// Example(FlatSpin): Calling as a 3D Function
// pts = skew(p=path3d(square(40,center=true)), szx=0.5, szy=0.3);
// trace_polyline(close_path(pts), showpts=true);
module skew ( sxy = 0 , sxz = 0 , syx = 0 , syz = 0 , szx = 0 , szy = 0 )
{
2019-12-20 07:26:54 +00:00
multmatrix (
affine3d_skew ( sxy = sxy , sxz = sxz , syx = syx , syz = syz , szx = szx , szy = szy )
) children ( ) ;
2019-12-20 05:03:13 +00:00
}
2019-03-23 04:13:18 +00:00
2019-12-20 05:03:13 +00:00
function skew ( p , sxy = 0 , sxz = 0 , syx = 0 , syz = 0 , szx = 0 , szy = 0 , planar = false ) =
let (
planar = planar || ( is_list ( p ) && is_num ( p . x ) && len ( p ) = = 2 ) ,
m = planar ? [
[ 1 , sxy , 0 ] ,
[ syx , 1 , 0 ] ,
[ 0 , 0 , 1 ]
2019-12-20 07:26:54 +00:00
] : affine3d_skew ( sxy = sxy , sxz = sxz , syx = syx , syz = syz , szx = szx , szy = szy )
2019-12-20 05:03:13 +00:00
)
2019-12-04 10:24:34 +00:00
is_undef ( p ) ? m :
assert ( is_list ( p ) )
is_num ( p . x ) ? (
planar ?
point2d ( m * concat ( point2d ( p ) , [ 1 ] ) ) :
point3d ( m * concat ( point3d ( p ) , [ 1 ] ) )
) :
2019-12-20 05:03:13 +00:00
is_vnf ( p ) ? [ skew ( sxy = sxy , sxz = sxz , syx = syx , syz = syz , szx = szx , szy = szy , planar = planar , p = p . x ) , p . y ] :
[ for ( l = p ) skew ( sxy = sxy , sxz = sxz , syx = syx , syz = syz , szx = szx , szy = szy , planar = planar , p = l ) ] ;
2019-12-04 10:24:34 +00:00
2017-08-30 00:00:16 +00:00
//////////////////////////////////////////////////////////////////////
2019-03-23 04:13:18 +00:00
// Section: Translational Distributors
2017-08-30 00:00:16 +00:00
//////////////////////////////////////////////////////////////////////
2019-03-23 04:13:18 +00:00
// Module: place_copies()
//
// Description:
// Makes copies of the given children at each of the given offsets.
//
// Usage:
// place_copies(a) ...
//
// Arguments:
// a = array of XYZ offset vectors. Default [[0,0,0]]
//
// Side Effects:
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
2019-08-06 23:43:41 +00:00
// `$idx` is set to the index number of each child being copied.
2019-03-23 04:13:18 +00:00
//
2018-11-27 03:55:18 +00:00
// Example:
2019-03-23 04:13:18 +00:00
// #sphere(r=10);
// place_copies([[-25,-25,0], [25,-25,0], [0,0,50], [0,25,0]]) sphere(r=10);
module place_copies ( a = [ [ 0 , 0 , 0 ] ] )
{
2019-08-06 23:43:41 +00:00
assert ( is_list ( a ) ) ;
for ( $ idx = idx ( a ) ) {
$ pos = a [ $ idx ] ;
assert ( is_vector ( $ pos ) ) ;
translate ( $ pos ) children ( ) ;
}
2017-08-30 00:00:16 +00:00
}
2019-03-23 04:13:18 +00:00
// Module: spread()
//
// Description:
2019-03-25 10:27:21 +00:00
// Evenly distributes `n` copies of all children along a line.
// Copies every child at each position.
2019-03-23 04:13:18 +00:00
//
// Usage:
// spread(l, [n], [p1]) ...
// spread(l, spacing, [p1]) ...
// spread(spacing, [n], [p1]) ...
// spread(p1, p2, [n]) ...
// spread(p1, p2, spacing) ...
//
// Arguments:
// p1 = Starting point of line.
// p2 = Ending point of line.
// l = Length to spread copies over.
// spacing = A 3D vector indicating which direction and distance to place each subsequent copy at.
// n = Number of copies to distribute along the line. (Default: 2)
//
// Side Effects:
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
// `$idx` is set to the index number of each child being copied.
//
// Example(FlatSpin):
// spread([0,0,0], [5,5,20], n=6) cube(size=[3,2,1],center=true);
// Examples:
// spread(l=40, n=6) cube(size=[3,2,1],center=true);
// spread(l=[15,30], n=6) cube(size=[3,2,1],center=true);
// spread(l=40, spacing=10) cube(size=[3,2,1],center=true);
// spread(spacing=[5,5,0], n=5) cube(size=[3,2,1],center=true);
2019-03-25 10:27:21 +00:00
// Example:
2019-03-25 11:52:59 +00:00
// spread(l=20, n=3) {
2019-03-25 10:27:21 +00:00
// cube(size=[1,3,1],center=true);
// cube(size=[3,1,1],center=true);
// }
2019-03-23 04:13:18 +00:00
module spread ( p1 = undef , p2 = undef , spacing = undef , l = undef , n = undef )
2017-08-30 00:00:16 +00:00
{
2019-03-23 04:13:18 +00:00
ll = (
2019-04-20 00:02:17 +00:00
! is_undef ( l ) ? scalar_vec3 ( l , 0 ) :
( ! is_undef ( spacing ) && ! is_undef ( n ) ) ? ( n * scalar_vec3 ( spacing , 0 ) ) :
( ! is_undef ( p1 ) && ! is_undef ( p2 ) ) ? point3d ( p2 - p1 ) :
2019-03-23 04:13:18 +00:00
undef
) ;
cnt = (
2019-04-20 00:02:17 +00:00
! is_undef ( n ) ? n :
( ! is_undef ( spacing ) && ! is_undef ( ll ) ) ? floor ( norm ( ll ) / norm ( scalar_vec3 ( spacing , 0 ) ) + 1.000001 ) :
2019-03-23 04:13:18 +00:00
2
) ;
spc = (
2019-04-20 00:02:17 +00:00
is_undef ( spacing ) ? ( ll / ( cnt - 1 ) ) :
is_num ( spacing ) && ! is_undef ( ll ) ? ( ll / ( cnt - 1 ) ) :
2019-03-23 04:13:18 +00:00
scalar_vec3 ( spacing , 0 )
) ;
2019-04-20 00:02:17 +00:00
assert ( ! is_undef ( cnt ) , "Need two of `spacing`, 'l', 'n', or `p1`/`p2` arguments in `spread()`." ) ;
spos = ! is_undef ( p1 ) ? point3d ( p1 ) : - ( cnt - 1 ) / 2 * spc ;
2019-05-27 05:34:46 +00:00
for ( i = [ 0 : 1 : cnt - 1 ] ) {
2019-03-23 04:13:18 +00:00
pos = i * spc + spos ;
$ pos = pos ;
$ idx = i ;
translate ( pos ) children ( ) ;
2017-08-30 00:00:16 +00:00
}
}
2018-10-07 05:26:38 +00:00
2019-03-23 04:13:18 +00:00
// Module: xspread()
//
// Description:
2019-04-02 02:03:49 +00:00
// Spreads out `n` copies of the children along a line on the X axis.
2019-03-23 04:13:18 +00:00
//
// Usage:
2019-04-02 02:03:49 +00:00
// xspread(spacing, [n], [sp]) ...
// xspread(l, [n], [sp]) ...
2019-03-23 04:13:18 +00:00
//
// Arguments:
// spacing = spacing between copies. (Default: 1.0)
// n = Number of copies to spread out. (Default: 2)
// l = Length to spread copies over.
2019-04-02 02:03:49 +00:00
// sp = If given, copies will be spread on a line to the right of starting position `sp`. If not given, copies will be spread along a line that is centered at [0,0,0].
2019-03-23 04:13:18 +00:00
//
// Side Effects:
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
// `$idx` is set to the index number of each child being copied.
//
// Examples:
// xspread(20) sphere(3);
// xspread(20, n=3) sphere(3);
// xspread(spacing=15, l=50) sphere(3);
2019-04-02 02:03:49 +00:00
// xspread(n=4, l=30, sp=[0,10,0]) sphere(3);
2019-03-25 10:27:21 +00:00
// Example:
2019-03-25 11:52:59 +00:00
// xspread(10, n=3) {
2019-03-25 10:27:21 +00:00
// cube(size=[1,3,1],center=true);
// cube(size=[3,1,1],center=true);
// }
2019-04-02 02:03:49 +00:00
module xspread ( spacing = undef , n = undef , l = undef , sp = undef )
2019-03-23 04:13:18 +00:00
{
2019-04-19 06:32:17 +00:00
spread ( l = l * RIGHT , spacing = spacing * RIGHT , n = n , p1 = sp ) children ( ) ;
2019-03-23 04:13:18 +00:00
}
// Module: yspread()
//
// Description:
2019-04-02 02:03:49 +00:00
// Spreads out `n` copies of the children along a line on the Y axis.
2019-03-23 04:13:18 +00:00
//
// Usage:
2019-04-02 02:03:49 +00:00
// yspread(spacing, [n], [sp]) ...
// yspread(l, [n], [sp]) ...
2019-03-23 04:13:18 +00:00
//
// Arguments:
// spacing = spacing between copies. (Default: 1.0)
// n = Number of copies to spread out. (Default: 2)
// l = Length to spread copies over.
2019-04-02 02:03:49 +00:00
// sp = If given, copies will be spread on a line back from starting position `sp`. If not given, copies will be spread along a line that is centered at [0,0,0].
2019-03-23 04:13:18 +00:00
//
// Side Effects:
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
// `$idx` is set to the index number of each child being copied.
//
// Examples:
// yspread(20) sphere(3);
// yspread(20, n=3) sphere(3);
// yspread(spacing=15, l=50) sphere(3);
2019-04-02 02:03:49 +00:00
// yspread(n=4, l=30, sp=[10,0,0]) sphere(3);
2019-03-25 10:27:21 +00:00
// Example:
2019-03-25 11:52:59 +00:00
// yspread(10, n=3) {
2019-03-25 10:27:21 +00:00
// cube(size=[1,3,1],center=true);
// cube(size=[3,1,1],center=true);
// }
2019-04-02 02:03:49 +00:00
module yspread ( spacing = undef , n = undef , l = undef , sp = undef )
2019-03-23 04:13:18 +00:00
{
2019-04-19 06:32:17 +00:00
spread ( l = l * BACK , spacing = spacing * BACK , n = n , p1 = sp ) children ( ) ;
2019-03-23 04:13:18 +00:00
}
// Module: zspread()
//
// Description:
2019-04-02 02:03:49 +00:00
// Spreads out `n` copies of the children along a line on the Z axis.
2019-03-23 04:13:18 +00:00
//
// Usage:
2019-04-02 02:03:49 +00:00
// zspread(spacing, [n], [sp]) ...
// zspread(l, [n], [sp]) ...
2019-03-23 04:13:18 +00:00
//
// Arguments:
// spacing = spacing between copies. (Default: 1.0)
// n = Number of copies to spread out. (Default: 2)
// l = Length to spread copies over.
2019-04-02 02:03:49 +00:00
// sp = If given, copies will be spread on a line up from starting position `sp`. If not given, copies will be spread along a line that is centered at [0,0,0].
2019-03-23 04:13:18 +00:00
//
// Side Effects:
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
// `$idx` is set to the index number of each child being copied.
//
// Examples:
// zspread(20) sphere(3);
// zspread(20, n=3) sphere(3);
// zspread(spacing=15, l=50) sphere(3);
2019-04-02 02:03:49 +00:00
// zspread(n=4, l=30, sp=[10,0,0]) sphere(3);
2019-03-25 10:27:21 +00:00
// Example:
2019-03-25 11:52:59 +00:00
// zspread(10, n=3) {
2019-03-25 10:27:21 +00:00
// cube(size=[1,3,1],center=true);
// cube(size=[3,1,1],center=true);
// }
2019-04-02 02:03:49 +00:00
module zspread ( spacing = undef , n = undef , l = undef , sp = undef )
2019-03-23 04:13:18 +00:00
{
2019-04-19 06:32:17 +00:00
spread ( l = l * UP , spacing = spacing * UP , n = n , p1 = sp ) children ( ) ;
2019-03-23 04:13:18 +00:00
}
// Module: distribute()
//
// Description:
// Spreads out each individual child along the direction `dir`.
2019-03-25 10:27:21 +00:00
// Every child is placed at a different position, in order.
2019-03-23 04:13:18 +00:00
// This is useful for laying out groups of disparate objects
// where you only really care about the spacing between them.
//
// Usage:
// distribute(spacing, dir, [sizes]) ...
// distribute(l, dir, [sizes]) ...
//
// Arguments:
// spacing = Spacing to add between each child. (Default: 10.0)
// sizes = Array containing how much space each child will need.
// dir = Vector direction to distribute copies along.
// l = Length to distribute copies along.
//
// Side Effect:
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
// `$idx` is set to the index number of each child being copied.
//
2018-10-07 05:26:38 +00:00
// Example:
2019-04-19 06:32:17 +00:00
// distribute(sizes=[100, 30, 50], dir=UP) {
2019-03-23 04:13:18 +00:00
// sphere(r=50);
// cube([10,20,30], center=true);
// cylinder(d=30, h=50, center=true);
// }
2019-04-19 06:32:17 +00:00
module distribute ( spacing = undef , sizes = undef , dir = RIGHT , l = undef )
2019-03-23 04:13:18 +00:00
{
gaps = ( $children < 2 ) ? [ 0 ] :
2019-05-27 05:34:46 +00:00
! is_undef ( sizes ) ? [ for ( i = [ 0 : 1 : $children - 2 ] ) sizes [ i ] / 2 + sizes [ i + 1 ] / 2 ] :
[ for ( i = [ 0 : 1 : $children - 2 ] ) 0 ] ;
2019-04-20 00:02:17 +00:00
spc = ! is_undef ( l ) ? ( ( l - sum ( gaps ) ) / ( $children - 1 ) ) : default ( spacing , 10 ) ;
2019-03-23 04:13:18 +00:00
gaps2 = [ for ( gap = gaps ) gap + spc ] ;
spos = dir * - sum ( gaps2 ) / 2 ;
2019-05-27 05:34:46 +00:00
for ( i = [ 0 : 1 : $children - 1 ] ) {
2019-03-23 04:13:18 +00:00
totspc = sum ( concat ( [ 0 ] , slice ( gaps2 , 0 , i ) ) ) ;
$ pos = spos + totspc * dir ;
$ idx = i ;
translate ( $ pos ) children ( i ) ;
}
}
2018-10-07 05:26:38 +00:00
2019-03-23 04:13:18 +00:00
// Module: xdistribute()
//
// Description:
// Spreads out each individual child along the X axis.
2019-03-25 10:27:21 +00:00
// Every child is placed at a different position, in order.
2019-03-23 04:13:18 +00:00
// This is useful for laying out groups of disparate objects
// where you only really care about the spacing between them.
//
// Usage:
// xdistribute(spacing, [sizes]) ...
// xdistribute(l, [sizes]) ...
//
// Arguments:
// spacing = spacing between each child. (Default: 10.0)
// sizes = Array containing how much space each child will need.
// l = Length to distribute copies along.
//
// Side Effect:
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
// `$idx` is set to the index number of each child being copied.
//
2018-10-07 05:26:38 +00:00
// Example:
2019-03-23 04:13:18 +00:00
// xdistribute(sizes=[100, 10, 30], spacing=40) {
// sphere(r=50);
// cube([10,20,30], center=true);
// cylinder(d=30, h=50, center=true);
// }
module xdistribute ( spacing = 10 , sizes = undef , l = undef )
{
2019-04-19 06:32:17 +00:00
dir = RIGHT ;
2019-03-23 04:13:18 +00:00
gaps = ( $children < 2 ) ? [ 0 ] :
2019-05-27 05:34:46 +00:00
! is_undef ( sizes ) ? [ for ( i = [ 0 : 1 : $children - 2 ] ) sizes [ i ] / 2 + sizes [ i + 1 ] / 2 ] :
[ for ( i = [ 0 : 1 : $children - 2 ] ) 0 ] ;
2019-04-20 00:02:17 +00:00
spc = ! is_undef ( l ) ? ( ( l - sum ( gaps ) ) / ( $children - 1 ) ) : default ( spacing , 10 ) ;
2019-03-23 04:13:18 +00:00
gaps2 = [ for ( gap = gaps ) gap + spc ] ;
spos = dir * - sum ( gaps2 ) / 2 ;
2019-05-27 05:34:46 +00:00
for ( i = [ 0 : 1 : $children - 1 ] ) {
2019-03-23 04:13:18 +00:00
totspc = sum ( concat ( [ 0 ] , slice ( gaps2 , 0 , i ) ) ) ;
$ pos = spos + totspc * dir ;
$ idx = i ;
translate ( $ pos ) children ( i ) ;
}
}
2018-10-07 05:26:38 +00:00
2019-03-23 04:13:18 +00:00
// Module: ydistribute()
//
// Description:
// Spreads out each individual child along the Y axis.
2019-03-25 10:27:21 +00:00
// Every child is placed at a different position, in order.
2019-03-23 04:13:18 +00:00
// This is useful for laying out groups of disparate objects
// where you only really care about the spacing between them.
//
// Usage:
// ydistribute(spacing, [sizes])
// ydistribute(l, [sizes])
//
// Arguments:
// spacing = spacing between each child. (Default: 10.0)
// sizes = Array containing how much space each child will need.
// l = Length to distribute copies along.
//
// Side Effect:
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
// `$idx` is set to the index number of each child being copied.
//
2018-10-07 05:26:38 +00:00
// Example:
2019-03-23 04:13:18 +00:00
// ydistribute(sizes=[30, 20, 100], spacing=40) {
// cylinder(d=30, h=50, center=true);
// cube([10,20,30], center=true);
// sphere(r=50);
// }
module ydistribute ( spacing = 10 , sizes = undef , l = undef )
{
2019-04-19 06:32:17 +00:00
dir = BACK ;
2019-03-23 04:13:18 +00:00
gaps = ( $children < 2 ) ? [ 0 ] :
2019-05-27 05:34:46 +00:00
! is_undef ( sizes ) ? [ for ( i = [ 0 : 1 : $children - 2 ] ) sizes [ i ] / 2 + sizes [ i + 1 ] / 2 ] :
[ for ( i = [ 0 : 1 : $children - 2 ] ) 0 ] ;
2019-04-20 00:02:17 +00:00
spc = ! is_undef ( l ) ? ( ( l - sum ( gaps ) ) / ( $children - 1 ) ) : default ( spacing , 10 ) ;
2019-03-23 04:13:18 +00:00
gaps2 = [ for ( gap = gaps ) gap + spc ] ;
spos = dir * - sum ( gaps2 ) / 2 ;
2019-05-27 05:34:46 +00:00
for ( i = [ 0 : 1 : $children - 1 ] ) {
2019-03-23 04:13:18 +00:00
totspc = sum ( concat ( [ 0 ] , slice ( gaps2 , 0 , i ) ) ) ;
$ pos = spos + totspc * dir ;
$ idx = i ;
translate ( $ pos ) children ( i ) ;
}
}
2017-08-30 00:00:16 +00:00
2019-03-23 04:13:18 +00:00
// Module: zdistribute()
//
// Description:
// Spreads out each individual child along the Z axis.
2019-03-25 10:27:21 +00:00
// Every child is placed at a different position, in order.
2019-03-23 04:13:18 +00:00
// This is useful for laying out groups of disparate objects
// where you only really care about the spacing between them.
//
// Usage:
// zdistribute(spacing, [sizes])
// zdistribute(l, [sizes])
//
// Arguments:
// spacing = spacing between each child. (Default: 10.0)
// sizes = Array containing how much space each child will need.
// l = Length to distribute copies along.
//
// Side Effect:
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
// `$idx` is set to the index number of each child being copied.
//
2017-08-30 00:00:16 +00:00
// Example:
2019-03-23 04:13:18 +00:00
// zdistribute(sizes=[30, 20, 100], spacing=40) {
// cylinder(d=30, h=50, center=true);
// cube([10,20,30], center=true);
// sphere(r=50);
// }
module zdistribute ( spacing = 10 , sizes = undef , l = undef )
2017-08-30 00:00:16 +00:00
{
2019-04-19 06:32:17 +00:00
dir = UP ;
2019-03-23 04:13:18 +00:00
gaps = ( $children < 2 ) ? [ 0 ] :
2019-05-27 05:34:46 +00:00
! is_undef ( sizes ) ? [ for ( i = [ 0 : 1 : $children - 2 ] ) sizes [ i ] / 2 + sizes [ i + 1 ] / 2 ] :
[ for ( i = [ 0 : 1 : $children - 2 ] ) 0 ] ;
2019-04-20 00:02:17 +00:00
spc = ! is_undef ( l ) ? ( ( l - sum ( gaps ) ) / ( $children - 1 ) ) : default ( spacing , 10 ) ;
2019-03-23 04:13:18 +00:00
gaps2 = [ for ( gap = gaps ) gap + spc ] ;
spos = dir * - sum ( gaps2 ) / 2 ;
2019-05-27 05:34:46 +00:00
for ( i = [ 0 : 1 : $children - 1 ] ) {
2019-03-23 04:13:18 +00:00
totspc = sum ( concat ( [ 0 ] , slice ( gaps2 , 0 , i ) ) ) ;
$ pos = spos + totspc * dir ;
$ idx = i ;
translate ( $ pos ) children ( i ) ;
}
2017-08-30 00:00:16 +00:00
}
2019-03-23 04:13:18 +00:00
// Module: grid2d()
//
// Description:
// Makes a square or hexagonal grid of copies of children.
//
// Usage:
2019-05-26 20:45:22 +00:00
// grid2d(size, spacing, [stagger], [scale], [in_poly]) ...
// grid2d(size, cols, rows, [stagger], [scale], [in_poly]) ...
// grid2d(spacing, cols, rows, [stagger], [scale], [in_poly]) ...
// grid2d(spacing, in_poly, [stagger], [scale]) ...
// grid2d(cols, rows, in_poly, [stagger], [scale]) ...
2019-03-23 04:13:18 +00:00
//
// Arguments:
// size = The [X,Y] size to spread the copies over.
// spacing = Distance between copies in [X,Y] or scalar distance.
// cols = How many columns of copies to make. If staggered, count both staggered and unstaggered columns.
// rows = How many rows of copies to make. If staggered, count both staggered and unstaggered rows.
2019-04-25 06:44:31 +00:00
// stagger = If true, make a staggered (hexagonal) grid. If false, make square grid. If `"alt"`, makes alternate staggered pattern. Default: false
2019-03-23 04:13:18 +00:00
// scale = [X,Y] scaling factors to reshape grid.
2019-03-25 10:27:21 +00:00
// in_poly = If given a list of polygon points, only creates copies whose center would be inside the polygon. Polygon can be concave and/or self crossing.
2019-05-26 19:47:50 +00:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
2019-03-23 04:13:18 +00:00
//
// Side Effects:
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
// `$col` is set to the integer column number for each child.
// `$row` is set to the integer row number for each child.
//
// Examples:
// grid2d(size=50, spacing=10, stagger=false) cylinder(d=10, h=1);
// grid2d(spacing=10, rows=7, cols=13, stagger=true) cylinder(d=6, h=5);
// grid2d(spacing=10, rows=7, cols=13, stagger="alt") cylinder(d=6, h=5);
// grid2d(size=50, rows=11, cols=11, stagger=true) cylinder(d=5, h=1);
//
2017-08-30 00:00:16 +00:00
// Example:
2019-03-23 04:13:18 +00:00
// poly = [[-25,-25], [25,25], [-25,25], [25,-25]];
// grid2d(spacing=5, stagger=true, in_poly=poly)
// zrot(180/6) cylinder(d=5, h=1, $fn=6);
// %polygon(poly);
//
2019-08-08 23:26:37 +00:00
// Example: Using `$row` and `$col`
// grid2d(spacing=[8,8], cols=8, rows=8, anchor=LEFT+FRONT)
// color(($row+$col)%2?"black":"red")
// cube([8,8,0.01], center=false);
//
2019-03-23 04:13:18 +00:00
// Example:
// // Makes a grid of hexagon pillars whose tops are all
// // angled to reflect light at [0,0,50], if they were shiny.
// hexregion = [for (a = [0:60:359.9]) 50.01*[cos(a), sin(a)]];
// grid2d(spacing=10, stagger=true, in_poly=hexregion) {
// // Note: You must use for(var=[val]) or let(var=val)
// // to set vars from $pos or other special vars in this scope.
2019-04-19 06:32:17 +00:00
// let (ref_v = (normalize([0,0,50]-point3d($pos)) + UP)/2)
2019-03-23 04:13:18 +00:00
// half_of(v=-ref_v, cp=[0,0,5])
// zrot(180/6)
// cylinder(h=20, d=10/cos(180/6)+0.01, $fn=6);
// }
2019-05-26 06:31:05 +00:00
module grid2d ( size = undef , spacing = undef , cols = undef , rows = undef , stagger = false , scale = [ 1 , 1 , 1 ] , in_poly = undef , anchor = CENTER , spin = 0 , orient = UP )
2017-08-30 00:00:16 +00:00
{
2019-10-31 08:33:28 +00:00
assert ( in_list ( stagger , [ false , true , "alt" ] ) ) ;
2019-07-17 23:18:02 +00:00
scl = vmul ( scalar_vec3 ( scale , 1 ) , ( stagger ! = false ? [ 0.5 , sin ( 60 ) , 1 ] : [ 1 , 1 , 1 ] ) ) ;
2019-04-20 00:02:17 +00:00
if ( ! is_undef ( size ) ) {
2019-03-23 04:13:18 +00:00
siz = scalar_vec3 ( size ) ;
2019-04-20 00:02:17 +00:00
if ( ! is_undef ( spacing ) ) {
2019-03-23 04:13:18 +00:00
spc = vmul ( scalar_vec3 ( spacing ) , scl ) ;
2019-08-08 23:26:37 +00:00
maxcols = ceil ( siz . x / spc . x ) ;
maxrows = ceil ( siz . y / spc . y ) ;
2019-05-26 06:31:05 +00:00
grid2d ( spacing = spacing , cols = maxcols , rows = maxrows , stagger = stagger , scale = scale , in_poly = in_poly , anchor = anchor , spin = spin , orient = orient ) children ( ) ;
2019-03-23 04:13:18 +00:00
} else {
2019-08-08 23:26:37 +00:00
spc = [ siz . x / cols , siz . y / rows ] ;
2019-05-26 06:31:05 +00:00
grid2d ( spacing = spc , cols = cols , rows = rows , stagger = stagger , scale = scale , in_poly = in_poly , anchor = anchor , spin = spin , orient = orient ) children ( ) ;
2017-08-30 00:00:16 +00:00
}
} else {
2019-08-08 23:26:37 +00:00
spc = is_list ( spacing ) ? point3d ( spacing ) : vmul ( scalar_vec3 ( spacing ) , scl ) ;
2019-04-20 00:02:17 +00:00
bounds = ! is_undef ( in_poly ) ? pointlist_bounds ( in_poly ) : undef ;
2019-05-27 05:34:46 +00:00
bnds = ! is_undef ( bounds ) ? [ for ( a = [ 0 , 1 ] ) 2 * max ( vabs ( [ for ( i = [ 0 , 1 ] ) bounds [ i ] [ a ] ] ) ) + 1 ] : undef ;
2019-04-20 00:02:17 +00:00
mcols = ! is_undef ( cols ) ? cols : ( ! is_undef ( spc ) && ! is_undef ( bnds ) ) ? quantup ( ceil ( bnds [ 0 ] / spc [ 0 ] ) - 1 , 4 ) + 1 : undef ;
mrows = ! is_undef ( rows ) ? rows : ( ! is_undef ( spc ) && ! is_undef ( bnds ) ) ? quantup ( ceil ( bnds [ 1 ] / spc [ 1 ] ) - 1 , 4 ) + 1 : undef ;
2019-08-08 23:26:37 +00:00
siz = vmul ( spc , [ mcols - 1 , mrows - 1 , 0 ] ) + [ 0 , 0 , 0.01 ] ;
2019-03-23 04:13:18 +00:00
staggermod = ( stagger = = "alt" ) ? 1 : 0 ;
if ( stagger = = false ) {
2019-05-26 06:31:05 +00:00
orient_and_anchor ( siz , orient , anchor , spin = spin ) {
2019-05-27 05:34:46 +00:00
for ( row = [ 0 : 1 : mrows - 1 ] ) {
for ( col = [ 0 : 1 : mcols - 1 ] ) {
2019-08-08 23:26:37 +00:00
pos = [ col * spc . x , row * spc . y ] - point2d ( siz / 2 ) ;
2019-04-20 00:02:17 +00:00
if ( is_undef ( in_poly ) || point_in_polygon ( pos , in_poly ) >= 0 ) {
2019-03-23 04:13:18 +00:00
$ col = col ;
$ row = row ;
$ pos = pos ;
2019-07-17 23:18:02 +00:00
translate ( pos ) children ( ) ;
2019-03-23 04:13:18 +00:00
}
}
}
}
} else {
// stagger == true or stagger == "alt"
2019-05-26 06:31:05 +00:00
orient_and_anchor ( siz , orient , anchor , spin = spin ) {
2019-03-23 04:13:18 +00:00
cols1 = ceil ( mcols / 2 ) ;
cols2 = mcols - cols1 ;
2019-05-27 05:34:46 +00:00
for ( row = [ 0 : 1 : mrows - 1 ] ) {
2019-03-23 04:13:18 +00:00
rowcols = ( ( row % 2 ) = = staggermod ) ? cols1 : cols2 ;
if ( rowcols > 0 ) {
2019-05-27 05:34:46 +00:00
for ( col = [ 0 : 1 : rowcols - 1 ] ) {
2019-03-23 04:13:18 +00:00
rowdx = ( row % 2 ! = staggermod ) ? spc [ 0 ] : 0 ;
pos = [ 2 * col * spc [ 0 ] + rowdx , row * spc [ 1 ] ] - point2d ( siz / 2 ) ;
2019-04-20 00:02:17 +00:00
if ( is_undef ( in_poly ) || point_in_polygon ( pos , in_poly ) >= 0 ) {
2019-03-23 04:13:18 +00:00
$ col = col * 2 + ( ( row % 2 ! = staggermod ) ? 1 : 0 ) ;
$ row = row ;
$ pos = pos ;
2019-07-17 23:18:02 +00:00
translate ( pos ) children ( ) ;
2019-03-23 04:13:18 +00:00
}
}
}
}
2017-08-30 00:00:16 +00:00
}
}
}
}
2019-03-23 04:13:18 +00:00
// Module: grid3d()
//
// Description:
// Makes a 3D grid of duplicate children.
//
// Usage:
// grid3d(n, spacing) ...
// grid3d(n=[Xn,Yn,Zn], spacing=[dX,dY,dZ]) ...
// grid3d([xa], [ya], [za]) ...
//
// Arguments:
// xa = array or range of X-axis values to offset by. (Default: [0])
// ya = array or range of Y-axis values to offset by. (Default: [0])
// za = array or range of Z-axis values to offset by. (Default: [0])
// n = Optional number of copies to have per axis.
// spacing = spacing of copies per axis. Use with `n`.
//
// Side Effect:
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
// `$idx` is set to the [Xidx,Yidx,Zidx] index values of each child copy, when using `count` and `n`.
//
// Examples(FlatSpin):
// grid3d(xa=[0:25:50],ya=[0,40],za=[-20:40:20]) sphere(r=5);
// grid3d(n=[3, 4, 2], spacing=[60, 50, 40]) sphere(r=10);
// Examples:
// grid3d(ya=[-60:40:60],za=[0,70]) sphere(r=10);
// grid3d(n=3, spacing=30) sphere(r=10);
// grid3d(n=[3, 1, 2], spacing=30) sphere(r=10);
// grid3d(n=[3, 4], spacing=[80, 60]) sphere(r=10);
// Examples:
// grid3d(n=[10, 10, 10], spacing=50) color($idx/9) cube(50, center=true);
module grid3d ( xa = [ 0 ] , ya = [ 0 ] , za = [ 0 ] , n = undef , spacing = undef )
2017-08-30 00:00:16 +00:00
{
2019-03-23 04:13:18 +00:00
n = scalar_vec3 ( n , 1 ) ;
spacing = scalar_vec3 ( spacing , undef ) ;
2019-04-20 00:02:17 +00:00
if ( ! is_undef ( n ) && ! is_undef ( spacing ) ) {
2019-05-27 05:34:46 +00:00
for ( xi = [ 0 : 1 : n . x - 1 ] ) {
for ( yi = [ 0 : 1 : n . y - 1 ] ) {
for ( zi = [ 0 : 1 : n . z - 1 ] ) {
2019-03-23 04:13:18 +00:00
$ idx = [ xi , yi , zi ] ;
$ pos = vmul ( spacing , $ idx - ( n - [ 1 , 1 , 1 ] ) / 2 ) ;
translate ( $ pos ) children ( ) ;
}
2017-08-30 00:00:16 +00:00
}
}
} else {
2019-03-23 04:13:18 +00:00
for ( xoff = xa , yoff = ya , zoff = za ) {
$ pos = [ xoff , yoff , zoff ] ;
translate ( $ pos ) children ( ) ;
2017-08-30 00:00:16 +00:00
}
}
}
2019-03-23 04:13:18 +00:00
//////////////////////////////////////////////////////////////////////
// Section: Rotational Distributors
//////////////////////////////////////////////////////////////////////
// Module: rot_copies()
//
// Description:
2019-07-18 01:37:16 +00:00
// Given a list of [X,Y,Z] rotation angles in `rots`, rotates copies of the children to each of those angles, regardless of axis of rotation.
// Given a list of scalar angles in `rots`, rotates copies of the children to each of those angles around the axis of rotation.
// If given a vector `v`, that becomes the axis of rotation. Default axis of rotation is UP.
// If given a count `n`, makes that many copies, rotated evenly around the axis.
// If given an offset `delta`, translates each child by that amount before rotating them into place. This makes rings.
// If given a centerpoint `cp`, centers the ring around that centerpoint.
// If `subrot` is true, each child will be rotated in place to keep the same size towards the center.
// The first (unrotated) copy will be placed at the relative starting angle `sa`.
2019-03-23 04:13:18 +00:00
//
// Usage:
// rot_copies(rots, [cp], [sa], [delta], [subrot]) ...
// rot_copies(rots, v, [cp], [sa], [delta], [subrot]) ...
// rot_copies(n, [v], [cp], [sa], [delta], [subrot]) ...
//
// Arguments:
// rots = A list of [X,Y,Z] rotation angles in degrees. If `v` is given, this will be a list of scalar angles in degrees to rotate around `v`.
2019-07-18 01:37:16 +00:00
// v = If given, this is the vector of the axis to rotate around.
2019-03-23 04:13:18 +00:00
// cp = Centerpoint to rotate around.
2019-07-18 01:37:16 +00:00
// n = Optional number of evenly distributed copies, rotated around the axis.
2019-03-23 04:13:18 +00:00
// sa = Starting angle, in degrees. For use with `n`. Angle is in degrees counter-clockwise.
// delta = [X,Y,Z] amount to move away from cp before rotating. Makes rings of copies.
// subrot = If false, don't sub-rotate children as they are copied around the ring.
//
// Side Effects:
// `$ang` is set to the rotation angle (or XYZ rotation triplet) of each child copy, and can be used to modify each child individually.
// `$idx` is set to the index value of each child copy.
2019-08-06 23:43:41 +00:00
// `$axis` is set to the axis to rotate around, if `rots` was given as a list of angles instead of a list of [X,Y,Z] rotation angles.
2019-03-23 04:13:18 +00:00
//
// Example:
// #cylinder(h=20, r1=5, r2=0);
// rot_copies([[45,0,0],[0,45,90],[90,-45,270]]) cylinder(h=20, r1=5, r2=0);
//
// Example:
2019-04-19 06:32:17 +00:00
// rot_copies([45, 90, 135], v=DOWN+BACK)
2019-03-23 04:13:18 +00:00
// yrot(90) cylinder(h=20, r1=5, r2=0);
// color("red",0.333) yrot(90) cylinder(h=20, r1=5, r2=0);
//
// Example:
2019-04-19 06:32:17 +00:00
// rot_copies(n=6, v=DOWN+BACK)
2019-03-23 04:13:18 +00:00
// yrot(90) cylinder(h=20, r1=5, r2=0);
// color("red",0.333) yrot(90) cylinder(h=20, r1=5, r2=0);
//
// Example:
2019-04-19 06:32:17 +00:00
// rot_copies(n=6, v=DOWN+BACK, delta=[10,0,0])
2019-03-23 04:13:18 +00:00
// yrot(90) cylinder(h=20, r1=5, r2=0);
// color("red",0.333) yrot(90) cylinder(h=20, r1=5, r2=0);
//
// Example:
2019-04-19 06:32:17 +00:00
// rot_copies(n=6, v=UP+FWD, delta=[10,0,0], sa=45)
2019-03-23 04:13:18 +00:00
// yrot(90) cylinder(h=20, r1=5, r2=0);
// color("red",0.333) yrot(90) cylinder(h=20, r1=5, r2=0);
//
2017-08-30 00:00:16 +00:00
// Example:
2019-04-19 06:32:17 +00:00
// rot_copies(n=6, v=DOWN+BACK, delta=[20,0,0], subrot=false)
2019-03-23 04:13:18 +00:00
// yrot(90) cylinder(h=20, r1=5, r2=0);
// color("red",0.333) yrot(90) cylinder(h=20, r1=5, r2=0);
2019-07-18 01:37:16 +00:00
module rot_copies ( rots = [ ] , v = undef , cp = [ 0 , 0 , 0 ] , n = undef , sa = 0 , offset = 0 , delta = [ 0 , 0 , 0 ] , subrot = true )
2017-08-30 00:00:16 +00:00
{
2019-03-23 04:13:18 +00:00
sang = sa + offset ;
2019-07-18 01:37:16 +00:00
angs = ! is_undef ( n ) ?
( n < = 0 ? [ ] : [ for ( i = [ 0 : 1 : n - 1 ] ) i / n * 360 + sang ] ) :
2020-01-03 01:03:06 +00:00
assert ( is_list ( rots ) )
rots ;
2019-07-18 01:37:16 +00:00
for ( $ idx = idx ( angs ) ) {
$ ang = angs [ $ idx ] ;
2019-08-06 23:43:41 +00:00
$ axis = v ;
2019-07-18 01:37:16 +00:00
translate ( cp ) {
rotate ( a = $ ang , v = v ) {
translate ( delta ) {
rot ( a = ( subrot ? sang : $ ang ) , v = v , reverse = true ) {
children ( ) ;
}
}
}
2017-08-30 00:00:16 +00:00
}
}
}
2019-03-23 04:13:18 +00:00
// Module: xrot_copies()
//
// Usage:
// xrot_copies(rots, [r], [cp], [sa], [subrot]) ...
// xrot_copies(n, [r], [cp], [sa], [subrot]) ...
//
2019-07-18 01:37:16 +00:00
// Description:
// Given an array of angles, rotates copies of the children to each of those angles around the X axis.
// If given a count `n`, makes that many copies, rotated evenly around the X axis.
// If given an offset radius `r`, distributes children around a ring of that radius.
// If given a centerpoint `cp`, centers the ring around that centerpoint.
// If `subrot` is true, each child will be rotated in place to keep the same size towards the center.
// The first (unrotated) copy will be placed at the relative starting angle `sa`.
//
2019-03-23 04:13:18 +00:00
// Arguments:
// rots = Optional array of rotation angles, in degrees, to make copies at.
// cp = Centerpoint to rotate around.
// n = Optional number of evenly distributed copies to be rotated around the ring.
// sa = Starting angle, in degrees. For use with `n`. Angle is in degrees counter-clockwise from Y+, when facing the origin from X+. First unrotated copy is placed at that angle.
// r = Radius to move children back, away from cp, before rotating. Makes rings of copies.
// subrot = If false, don't sub-rotate children as they are copied around the ring.
//
// Side Effects:
2019-07-18 01:37:16 +00:00
// `$idx` is set to the index value of each child copy.
2019-08-06 23:43:41 +00:00
// `$ang` is set to the rotation angle of each child copy, and can be used to modify each child individually.
// `$axis` is set to the axis vector rotated around.
2019-03-23 04:13:18 +00:00
//
2017-08-30 00:00:16 +00:00
// Example:
2019-03-23 04:13:18 +00:00
// xrot_copies([180, 270, 315])
// cylinder(h=20, r1=5, r2=0);
// color("red",0.333) cylinder(h=20, r1=5, r2=0);
//
// Example:
// xrot_copies(n=6)
// cylinder(h=20, r1=5, r2=0);
// color("red",0.333) cylinder(h=20, r1=5, r2=0);
//
// Example:
// xrot_copies(n=6, r=10)
// xrot(-90) cylinder(h=20, r1=5, r2=0);
// color("red",0.333) xrot(-90) cylinder(h=20, r1=5, r2=0);
//
// Example:
// xrot_copies(n=6, r=10, sa=45)
// xrot(-90) cylinder(h=20, r1=5, r2=0);
// color("red",0.333) xrot(-90) cylinder(h=20, r1=5, r2=0);
//
// Example:
// xrot_copies(n=6, r=20, subrot=false)
// xrot(-90) cylinder(h=20, r1=5, r2=0, center=true);
// color("red",0.333) xrot(-90) cylinder(h=20, r1=5, r2=0, center=true);
2019-07-18 01:37:16 +00:00
module xrot_copies ( rots = [ ] , cp = [ 0 , 0 , 0 ] , n = undef , sa = 0 , r = 0 , subrot = true )
2017-08-30 00:00:16 +00:00
{
2019-07-18 01:37:16 +00:00
rot_copies ( rots = rots , v = RIGHT , cp = cp , n = n , sa = sa , delta = [ 0 , r , 0 ] , subrot = subrot ) children ( ) ;
2017-08-30 00:00:16 +00:00
}
2019-03-23 04:13:18 +00:00
// Module: yrot_copies()
//
// Usage:
// yrot_copies(rots, [r], [cp], [sa], [subrot]) ...
// yrot_copies(n, [r], [cp], [sa], [subrot]) ...
//
2019-07-18 01:37:16 +00:00
// Description:
// Given an array of angles, rotates copies of the children to each of those angles around the Y axis.
// If given a count `n`, makes that many copies, rotated evenly around the Y axis.
// If given an offset radius `r`, distributes children around a ring of that radius.
// If given a centerpoint `cp`, centers the ring around that centerpoint.
// If `subrot` is true, each child will be rotated in place to keep the same size towards the center.
// The first (unrotated) copy will be placed at the relative starting angle `sa`.
//
2019-03-23 04:13:18 +00:00
// Arguments:
// rots = Optional array of rotation angles, in degrees, to make copies at.
// cp = Centerpoint to rotate around.
// n = Optional number of evenly distributed copies to be rotated around the ring.
// sa = Starting angle, in degrees. For use with `n`. Angle is in degrees counter-clockwise from X-, when facing the origin from Y+.
// r = Radius to move children left, away from cp, before rotating. Makes rings of copies.
// subrot = If false, don't sub-rotate children as they are copied around the ring.
//
// Side Effects:
2019-07-18 01:37:16 +00:00
// `$idx` is set to the index value of each child copy.
2019-08-06 23:43:41 +00:00
// `$ang` is set to the rotation angle of each child copy, and can be used to modify each child individually.
// `$axis` is set to the axis vector rotated around.
2019-03-23 04:13:18 +00:00
//
// Example:
// yrot_copies([180, 270, 315])
// cylinder(h=20, r1=5, r2=0);
// color("red",0.333) cylinder(h=20, r1=5, r2=0);
//
// Example:
// yrot_copies(n=6)
// cylinder(h=20, r1=5, r2=0);
// color("red",0.333) cylinder(h=20, r1=5, r2=0);
//
// Example:
// yrot_copies(n=6, r=10)
// yrot(-90) cylinder(h=20, r1=5, r2=0);
// color("red",0.333) yrot(-90) cylinder(h=20, r1=5, r2=0);
//
// Example:
// yrot_copies(n=6, r=10, sa=45)
// yrot(-90) cylinder(h=20, r1=5, r2=0);
// color("red",0.333) yrot(-90) cylinder(h=20, r1=5, r2=0);
//
// Example:
// yrot_copies(n=6, r=20, subrot=false)
// yrot(-90) cylinder(h=20, r1=5, r2=0, center=true);
// color("red",0.333) yrot(-90) cylinder(h=20, r1=5, r2=0, center=true);
2019-07-18 01:37:16 +00:00
module yrot_copies ( rots = [ ] , cp = [ 0 , 0 , 0 ] , n = undef , sa = 0 , r = 0 , subrot = true )
2019-03-23 04:13:18 +00:00
{
2019-07-18 01:37:16 +00:00
rot_copies ( rots = rots , v = BACK , cp = cp , n = n , sa = sa , delta = [ - r , 0 , 0 ] , subrot = subrot ) children ( ) ;
2019-03-23 04:13:18 +00:00
}
// Module: zrot_copies()
//
// Usage:
// zrot_copies(rots, [r], [cp], [sa], [subrot]) ...
// zrot_copies(n, [r], [cp], [sa], [subrot]) ...
//
2019-07-18 01:37:16 +00:00
// Description:
// Given an array of angles, rotates copies of the children to each of those angles around the Z axis.
// If given a count `n`, makes that many copies, rotated evenly around the Z axis.
// If given an offset radius `r`, distributes children around a ring of that radius.
// If given a centerpoint `cp`, centers the ring around that centerpoint.
// If `subrot` is true, each child will be rotated in place to keep the same size towards the center.
// The first (unrotated) copy will be placed at the relative starting angle `sa`.
//
2019-03-23 04:13:18 +00:00
// Arguments:
// rots = Optional array of rotation angles, in degrees, to make copies at.
2019-07-18 01:37:16 +00:00
// cp = Centerpoint to rotate around. Default: [0,0,0]
2019-03-23 04:13:18 +00:00
// n = Optional number of evenly distributed copies to be rotated around the ring.
2019-07-18 01:37:16 +00:00
// sa = Starting angle, in degrees. For use with `n`. Angle is in degrees counter-clockwise from X+, when facing the origin from Z+. Default: 0
// r = Radius to move children right, away from cp, before rotating. Makes rings of copies. Default: 0
// subrot = If false, don't sub-rotate children as they are copied around the ring. Default: true
2019-03-23 04:13:18 +00:00
//
// Side Effects:
2019-07-18 01:37:16 +00:00
// `$idx` is set to the index value of each child copy.
2019-08-06 23:43:41 +00:00
// `$ang` is set to the rotation angle of each child copy, and can be used to modify each child individually.
// `$axis` is set to the axis vector rotated around.
2019-03-23 04:13:18 +00:00
//
// Example:
// zrot_copies([180, 270, 315])
// yrot(90) cylinder(h=20, r1=5, r2=0);
// color("red",0.333) yrot(90) cylinder(h=20, r1=5, r2=0);
//
// Example:
// zrot_copies(n=6)
// yrot(90) cylinder(h=20, r1=5, r2=0);
// color("red",0.333) yrot(90) cylinder(h=20, r1=5, r2=0);
//
// Example:
// zrot_copies(n=6, r=10)
// yrot(90) cylinder(h=20, r1=5, r2=0);
// color("red",0.333) yrot(90) cylinder(h=20, r1=5, r2=0);
//
// Example:
// zrot_copies(n=6, r=20, sa=45)
// yrot(90) cylinder(h=20, r1=5, r2=0, center=true);
// color("red",0.333) yrot(90) cylinder(h=20, r1=5, r2=0, center=true);
//
// Example:
// zrot_copies(n=6, r=20, subrot=false)
// yrot(-90) cylinder(h=20, r1=5, r2=0, center=true);
// color("red",0.333) yrot(-90) cylinder(h=20, r1=5, r2=0, center=true);
2019-07-18 01:37:16 +00:00
module zrot_copies ( rots = [ ] , cp = [ 0 , 0 , 0 ] , n = undef , sa = 0 , r = 0 , subrot = true )
2019-03-23 04:13:18 +00:00
{
2019-07-18 01:37:16 +00:00
rot_copies ( rots = rots , v = UP , cp = cp , n = n , sa = sa , delta = [ r , 0 , 0 ] , subrot = subrot ) children ( ) ;
2019-03-23 04:13:18 +00:00
}
// Module: arc_of()
//
// Description:
// Evenly distributes n duplicate children around an ovoid arc on the XY plane.
//
// Usage:
// arc_of(r|d, n, [sa], [ea], [rot]
// arc_of(rx|dx, ry|dy, n, [sa], [ea], [rot]
//
// Arguments:
2017-08-30 00:00:16 +00:00
// n = number of copies to distribute around the circle. (Default: 6)
// r = radius of circle (Default: 1)
// rx = radius of ellipse on X axis. Used instead of r.
// ry = radius of ellipse on Y axis. Used instead of r.
// d = diameter of circle. (Default: 2)
// dx = diameter of ellipse on X axis. Used instead of d.
// dy = diameter of ellipse on Y axis. Used instead of d.
// rot = whether to rotate the copied children. (Default: false)
// sa = starting angle. (Default: 0.0)
// ea = ending angle. Will distribute copies CCW from sa to ea. (Default: 360.0)
2019-03-23 04:13:18 +00:00
//
// Side Effects:
// `$ang` is set to the rotation angle of each child copy, and can be used to modify each child individually.
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
// `$idx` is set to the index value of each child copy.
//
// Example:
// #cube(size=[10,3,3],center=true);
// arc_of(d=40, n=5) cube(size=[10,3,3],center=true);
//
// Example:
// #cube(size=[10,3,3],center=true);
// arc_of(d=40, n=5, sa=45, ea=225) cube(size=[10,3,3],center=true);
//
// Example:
// #cube(size=[10,3,3],center=true);
// arc_of(r=15, n=8, rot=false) cube(size=[10,3,3],center=true);
//
// Example:
// #cube(size=[10,3,3],center=true);
// arc_of(rx=20, ry=10, n=8) cube(size=[10,3,3],center=true);
2017-08-30 00:00:16 +00:00
module arc_of (
2019-03-23 04:13:18 +00:00
n = 6 ,
r = undef , rx = undef , ry = undef ,
d = undef , dx = undef , dy = undef ,
sa = 0 , ea = 360 ,
rot = true
2017-08-30 00:00:16 +00:00
) {
2019-08-03 09:18:40 +00:00
rx = get_radius ( r1 = rx , r = r , d1 = dx , d = d , dflt = 1 ) ;
ry = get_radius ( r1 = ry , r = r , d1 = dy , d = d , dflt = 1 ) ;
2019-03-23 04:13:18 +00:00
sa = posmod ( sa , 360 ) ;
ea = posmod ( ea , 360 ) ;
2017-08-30 00:00:16 +00:00
n = ( abs ( ea - sa ) < 0.01 ) ? ( n + 1 ) : n ;
delt = ( ( ( ea < = sa ) ? 360.0 : 0 ) + ea - sa ) / ( n - 1 ) ;
2019-05-27 05:34:46 +00:00
for ( $ idx = [ 0 : 1 : n - 1 ] ) {
2019-03-23 04:13:18 +00:00
$ ang = sa + ( $ idx * delt ) ;
$ pos = [ rx * cos ( $ ang ) , ry * sin ( $ ang ) , 0 ] ;
translate ( $ pos ) {
zrot ( rot ? atan2 ( ry * sin ( $ ang ) , rx * cos ( $ ang ) ) : 0 ) {
2017-08-30 00:00:16 +00:00
children ( ) ;
}
}
}
}
2019-03-23 04:13:18 +00:00
// Module: ovoid_spread()
//
// Description:
// Spreads children semi-evenly over the surface of a sphere.
//
// Usage:
// ovoid_spread(r|d, n, [cone_ang], [scale], [perp]) ...
//
// Arguments:
// r = Radius of the sphere to distribute over
// d = Diameter of the sphere to distribute over
// n = How many copies to evenly spread over the surface.
// cone_ang = Angle of the cone, in degrees, to limit how much of the sphere gets covered. For full sphere coverage, use 180. Measured pre-scaling. Default: 180
// scale = The [X,Y,Z] scaling factors to reshape the sphere being covered.
// perp = If true, rotate children to be perpendicular to the sphere surface. Default: true
//
// Side Effects:
// `$pos` is set to the relative post-scaled centerpoint of each child copy, and can be used to modify each child individually.
// `$theta` is set to the theta angle of the child from the center of the sphere.
// `$phi` is set to the pre-scaled phi angle of the child from the center of the sphere.
// `$rad` is set to the pre-scaled radial distance of the child from the center of the sphere.
// `$idx` is set to the index number of each child being copied.
//
// Example:
// ovoid_spread(n=250, d=100, cone_ang=45, scale=[3,3,1])
// cylinder(d=10, h=10, center=false);
//
2018-10-08 03:00:50 +00:00
// Example:
2019-03-23 04:13:18 +00:00
// ovoid_spread(n=500, d=100, cone_ang=180)
// color(normalize(point3d(vabs($pos))))
// cylinder(d=8, h=10, center=false);
module ovoid_spread ( r = undef , d = undef , n = 100 , cone_ang = 90 , scale = [ 1 , 1 , 1 ] , perp = true )
{
r = get_radius ( r = r , d = d , dflt = 50 ) ;
cnt = ceil ( n / ( cone_ang / 180 ) ) ;
// Calculate an array of [theta,phi] angles for `n` number of
// points, almost evenly spaced across the surface of a sphere.
// This approximation is based on the golden spiral method.
2019-05-27 05:34:46 +00:00
theta_phis = [ for ( x = [ 0 : 1 : n - 1 ] ) [ 180 * ( 1 + sqrt ( 5 ) ) * ( x + 0.5 ) % 360 , acos ( 1 - 2 * ( x + 0.5 ) / cnt ) ] ] ;
2019-03-23 04:13:18 +00:00
2019-08-06 23:43:41 +00:00
for ( $ idx = idx ( theta_phis ) ) {
2019-04-17 02:16:50 +00:00
tp = theta_phis [ $ idx ] ;
2019-03-23 04:13:18 +00:00
xyz = spherical_to_xyz ( r , tp [ 0 ] , tp [ 1 ] ) ;
$ pos = vmul ( xyz , scale ) ;
$t heta = tp [ 0 ] ;
$ phi = tp [ 1 ] ;
$ rad = r ;
translate ( $ pos ) {
if ( perp ) {
2019-04-19 06:32:17 +00:00
rot ( from = UP , to = xyz ) children ( ) ;
2019-03-23 04:13:18 +00:00
} else {
children ( ) ;
}
}
}
}
2018-10-08 03:00:50 +00:00
2019-03-23 04:13:18 +00:00
//////////////////////////////////////////////////////////////////////
// Section: Reflectional Distributors
//////////////////////////////////////////////////////////////////////
2018-10-08 03:00:50 +00:00
2019-03-23 04:13:18 +00:00
// Module: mirror_copy()
//
// Description:
// Makes a copy of the children, mirrored across the given plane.
//
// Usage:
// mirror_copy(v, [cp], [offset]) ...
//
// Arguments:
// v = The normal vector of the plane to mirror across.
// offset = distance to offset away from the plane.
// cp = A point that lies on the mirroring plane.
//
// Side Effects:
// `$orig` is true for the original instance of children. False for the copy.
// `$idx` is set to the index value of each copy.
//
// Example:
// mirror_copy([1,-1,0]) zrot(-45) yrot(90) cylinder(d1=10, d2=0, h=20);
// color("blue",0.25) zrot(-45) cube([0.01,15,15], center=true);
//
2018-10-08 03:00:50 +00:00
// Example:
2019-03-23 04:13:18 +00:00
// mirror_copy([1,1,0], offset=5) rot(a=90,v=[-1,1,0]) cylinder(d1=10, d2=0, h=20);
// color("blue",0.25) zrot(45) cube([0.01,15,15], center=true);
//
// Example:
2019-04-19 06:32:17 +00:00
// mirror_copy(UP+BACK, cp=[0,-5,-5]) rot(from=UP, to=BACK+UP) cylinder(d1=10, d2=0, h=20);
// color("blue",0.25) translate([0,-5,-5]) rot(from=UP, to=BACK+UP) cube([15,15,0.01], center=true);
2019-03-23 04:13:18 +00:00
module mirror_copy ( v = [ 0 , 0 , 1 ] , offset = 0 , cp = [ 0 , 0 , 0 ] )
{
nv = v / norm ( v ) ;
off = nv * offset ;
if ( cp = = [ 0 , 0 , 0 ] ) {
translate ( off ) {
$ orig = true ;
$ idx = 0 ;
children ( ) ;
}
mirror ( nv ) translate ( off ) {
$ orig = false ;
$ idx = 1 ;
children ( ) ;
}
} else {
translate ( off ) children ( ) ;
translate ( cp ) mirror ( nv ) translate ( - cp ) translate ( off ) children ( ) ;
}
}
2017-08-30 00:00:16 +00:00
2019-03-23 04:13:18 +00:00
// Module: xflip_copy()
//
// Description:
// Makes a copy of the children, mirrored across the X axis.
//
// Usage:
2019-06-12 05:12:49 +00:00
// xflip_copy([x], [offset]) ...
2019-03-23 04:13:18 +00:00
//
// Arguments:
// offset = Distance to offset children right, before copying.
2019-06-12 05:12:49 +00:00
// x = The X coordinate of the mirroring plane. Default: 0
2019-03-23 04:13:18 +00:00
//
// Side Effects:
// `$orig` is true for the original instance of children. False for the copy.
// `$idx` is set to the index value of each copy.
//
// Example:
// xflip_copy() yrot(90) cylinder(h=20, r1=4, r2=0);
// color("blue",0.25) cube([0.01,15,15], center=true);
//
// Example:
// xflip_copy(offset=5) yrot(90) cylinder(h=20, r1=4, r2=0);
// color("blue",0.25) cube([0.01,15,15], center=true);
//
// Example:
2019-06-12 05:12:49 +00:00
// xflip_copy(x=-5) yrot(90) cylinder(h=20, r1=4, r2=0);
2019-03-23 04:13:18 +00:00
// color("blue",0.25) left(5) cube([0.01,15,15], center=true);
2019-06-12 05:12:49 +00:00
module xflip_copy ( offset = 0 , x = 0 )
2019-03-23 04:13:18 +00:00
{
2019-06-12 05:12:49 +00:00
mirror_copy ( v = [ 1 , 0 , 0 ] , offset = offset , cp = [ x , 0 , 0 ] ) children ( ) ;
2019-03-23 04:13:18 +00:00
}
2017-08-30 00:00:16 +00:00
2019-03-23 04:13:18 +00:00
// Module: yflip_copy()
//
// Description:
// Makes a copy of the children, mirrored across the Y axis.
//
// Usage:
2019-06-12 05:12:49 +00:00
// yflip_copy([y], [offset]) ...
2019-03-23 04:13:18 +00:00
//
// Arguments:
// offset = Distance to offset children back, before copying.
2019-06-12 05:12:49 +00:00
// y = The Y coordinate of the mirroring plane. Default: 0
2019-03-23 04:13:18 +00:00
//
// Side Effects:
// `$orig` is true for the original instance of children. False for the copy.
// `$idx` is set to the index value of each copy.
//
// Example:
// yflip_copy() xrot(-90) cylinder(h=20, r1=4, r2=0);
// color("blue",0.25) cube([15,0.01,15], center=true);
//
// Example:
// yflip_copy(offset=5) xrot(-90) cylinder(h=20, r1=4, r2=0);
// color("blue",0.25) cube([15,0.01,15], center=true);
//
// Example:
2019-06-12 05:12:49 +00:00
// yflip_copy(y=-5) xrot(-90) cylinder(h=20, r1=4, r2=0);
2019-03-23 04:13:18 +00:00
// color("blue",0.25) fwd(5) cube([15,0.01,15], center=true);
2019-06-12 05:12:49 +00:00
module yflip_copy ( offset = 0 , y = 0 )
2019-03-23 04:13:18 +00:00
{
2019-06-12 05:12:49 +00:00
mirror_copy ( v = [ 0 , 1 , 0 ] , offset = offset , cp = [ 0 , y , 0 ] ) children ( ) ;
2019-03-23 04:13:18 +00:00
}
2017-08-30 00:00:16 +00:00
2019-03-23 04:13:18 +00:00
// Module: zflip_copy()
//
// Description:
// Makes a copy of the children, mirrored across the Z axis.
//
// Usage:
2019-06-12 05:12:49 +00:00
// zflip_copy([z], [offset]) ...
2019-03-23 04:13:18 +00:00
//
// Arguments:
// offset = Distance to offset children up, before copying.
2019-06-12 05:12:49 +00:00
// z = The Z coordinate of the mirroring plane. Default: 0
2019-03-23 04:13:18 +00:00
//
// Side Effects:
// `$orig` is true for the original instance of children. False for the copy.
2019-06-12 05:12:49 +00:00
// `$idx` is set to the index value of each copy.
2019-03-23 04:13:18 +00:00
//
// Example:
// zflip_copy() cylinder(h=20, r1=4, r2=0);
// color("blue",0.25) cube([15,15,0.01], center=true);
//
// Example:
// zflip_copy(offset=5) cylinder(h=20, r1=4, r2=0);
// color("blue",0.25) cube([15,15,0.01], center=true);
//
// Example:
2019-06-12 05:12:49 +00:00
// zflip_copy(z=-5) cylinder(h=20, r1=4, r2=0);
2019-03-23 04:13:18 +00:00
// color("blue",0.25) down(5) cube([15,15,0.01], center=true);
2019-06-12 05:12:49 +00:00
module zflip_copy ( offset = 0 , z = 0 )
2019-03-23 04:13:18 +00:00
{
2019-06-12 05:12:49 +00:00
mirror_copy ( v = [ 0 , 0 , 1 ] , offset = offset , cp = [ 0 , 0 , z ] ) children ( ) ;
2019-03-23 04:13:18 +00:00
}
2017-08-30 00:00:16 +00:00
2019-03-23 04:13:18 +00:00
//////////////////////////////////////////////////////////////////////
// Section: Mutators
//////////////////////////////////////////////////////////////////////
2018-11-19 23:14:02 +00:00
2019-03-23 04:13:18 +00:00
// Module: half_of()
//
// Usage:
// half_of(v, [cp], [s]) ...
//
// Description:
// Slices an object at a cut plane, and masks away everything that is on one side.
//
// Arguments:
2019-04-19 06:32:17 +00:00
// v = Normal of plane to slice at. Keeps everything on the side the normal points to. Default: [0,0,1] (UP)
2019-03-31 22:36:13 +00:00
// cp = If given as a scalar, moves the cut plane along the normal by the given amount. If given as a point, specifies a point on the cut plane. This can be used to shift where it slices the object at. Default: [0,0,0]
2019-03-23 04:13:18 +00:00
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, it messes with centering your view. Default: 100
2019-04-19 06:32:17 +00:00
// planar = If true, this becomes a 2D operation. When planar, a `v` of `UP` or `DOWN` becomes equivalent of `BACK` and `FWD` respectively.
2019-03-23 04:13:18 +00:00
//
2018-11-19 23:14:02 +00:00
// Examples:
2019-04-19 06:32:17 +00:00
// half_of(DOWN+BACK, cp=[0,-10,0]) cylinder(h=40, r1=10, r2=0, center=false);
// half_of(DOWN+LEFT, s=200) sphere(d=150);
2019-03-31 23:39:15 +00:00
// Example(2D):
// half_of([1,1], planar=true) circle(d=50);
2020-01-15 22:24:57 +00:00
module half_of ( v = UP , cp = [ 0 , 0 , 0 ] , s = 1000 , planar = false )
2019-03-23 04:13:18 +00:00
{
2019-04-20 00:02:17 +00:00
cp = is_num ( cp ) ? cp * normalize ( v ) : cp ;
2019-03-23 04:13:18 +00:00
if ( cp ! = [ 0 , 0 , 0 ] ) {
2019-03-31 23:39:15 +00:00
translate ( cp ) half_of ( v = v , s = s , planar = planar ) translate ( - cp ) children ( ) ;
} else if ( planar ) {
2019-04-19 06:32:17 +00:00
v = ( v = = UP ) ? BACK : ( v = = DOWN ) ? FWD : v ;
2019-03-31 23:39:15 +00:00
ang = atan2 ( v . y , v . x ) ;
difference ( ) {
children ( ) ;
rotate ( ang + 90 ) {
back ( s / 2 ) square ( s , center = true ) ;
}
}
2019-03-23 04:13:18 +00:00
} else {
difference ( ) {
children ( ) ;
2019-04-19 06:32:17 +00:00
rot ( from = UP , to = - v ) {
2019-03-23 04:13:18 +00:00
up ( s / 2 ) cube ( s , center = true ) ;
}
}
}
}
2018-11-19 23:14:02 +00:00
2019-03-23 04:13:18 +00:00
// Module: left_half()
//
// Usage:
2019-05-02 19:05:22 +00:00
// left_half([s], [x]) ...
// left_half(planar=true, [s], [x]) ...
2019-03-23 04:13:18 +00:00
//
// Description:
// Slices an object at a vertical Y-Z cut plane, and masks away everything that is right of it.
//
// Arguments:
2019-12-17 03:19:17 +00:00
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may be incorrect. Default: 10000
2019-05-02 19:05:22 +00:00
// x = The X coordinate of the cut-plane. Default: 0
2019-03-31 23:39:15 +00:00
// planar = If true, this becomes a 2D operation.
2019-03-23 04:13:18 +00:00
//
2018-11-19 23:14:02 +00:00
// Examples:
2019-03-23 04:13:18 +00:00
// left_half() sphere(r=20);
2019-05-02 19:05:22 +00:00
// left_half(x=-8) sphere(r=20);
2019-03-31 23:39:15 +00:00
// Example(2D):
// left_half(planar=true) circle(r=20);
2020-01-15 22:24:57 +00:00
module left_half ( s = 1000 , x = 0 , planar = false )
2019-03-31 22:36:13 +00:00
{
2019-04-19 06:32:17 +00:00
dir = LEFT ;
2019-05-01 07:43:27 +00:00
difference ( ) {
children ( ) ;
2019-05-02 19:05:22 +00:00
translate ( [ x , 0 , 0 ] - dir * s / 2 ) {
2019-03-31 23:39:15 +00:00
if ( planar ) {
square ( s , center = true ) ;
} else {
cube ( s , center = true ) ;
}
}
2019-03-31 22:36:13 +00:00
}
}
2019-03-23 04:13:18 +00:00
// Module: right_half()
//
// Usage:
2019-05-02 19:05:22 +00:00
// right_half([s], [x]) ...
// right_half(planar=true, [s], [x]) ...
2019-03-23 04:13:18 +00:00
//
// Description:
// Slices an object at a vertical Y-Z cut plane, and masks away everything that is left of it.
//
// Arguments:
2019-12-17 03:19:17 +00:00
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may be incorrect. Default: 10000
2019-05-02 19:05:22 +00:00
// x = The X coordinate of the cut-plane. Default: 0
2019-03-31 23:39:15 +00:00
// planar = If true, this becomes a 2D operation.
2019-03-23 04:13:18 +00:00
//
// Examples(FlatSpin):
// right_half() sphere(r=20);
2019-05-02 19:05:22 +00:00
// right_half(x=-5) sphere(r=20);
2019-03-31 23:39:15 +00:00
// Example(2D):
// right_half(planar=true) circle(r=20);
2020-01-15 22:24:57 +00:00
module right_half ( s = 1000 , x = 0 , planar = false )
2019-03-31 22:36:13 +00:00
{
2019-04-19 06:32:17 +00:00
dir = RIGHT ;
2019-05-01 07:43:27 +00:00
difference ( ) {
children ( ) ;
2019-05-02 19:05:22 +00:00
translate ( [ x , 0 , 0 ] - dir * s / 2 ) {
2019-03-31 23:39:15 +00:00
if ( planar ) {
square ( s , center = true ) ;
} else {
cube ( s , center = true ) ;
}
}
2019-03-31 22:36:13 +00:00
}
}
2019-03-23 04:13:18 +00:00
// Module: front_half()
//
// Usage:
2019-05-02 19:05:22 +00:00
// front_half([s], [y]) ...
// front_half(planar=true, [s], [y]) ...
2019-03-23 04:13:18 +00:00
//
// Description:
// Slices an object at a vertical X-Z cut plane, and masks away everything that is behind it.
//
// Arguments:
2019-12-17 03:19:17 +00:00
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may be incorrect. Default: 10000
2019-05-02 19:05:22 +00:00
// y = The Y coordinate of the cut-plane. Default: 0
2019-03-31 23:39:15 +00:00
// planar = If true, this becomes a 2D operation.
2019-03-23 04:13:18 +00:00
//
// Examples(FlatSpin):
// front_half() sphere(r=20);
2019-05-02 19:05:22 +00:00
// front_half(y=5) sphere(r=20);
2019-03-31 23:39:15 +00:00
// Example(2D):
// front_half(planar=true) circle(r=20);
2020-01-15 22:24:57 +00:00
module front_half ( s = 1000 , y = 0 , planar = false )
2019-03-31 22:36:13 +00:00
{
2019-04-19 06:32:17 +00:00
dir = FWD ;
2019-05-01 07:43:27 +00:00
difference ( ) {
children ( ) ;
2019-05-02 19:05:22 +00:00
translate ( [ 0 , y , 0 ] - dir * s / 2 ) {
2019-03-31 23:39:15 +00:00
if ( planar ) {
square ( s , center = true ) ;
} else {
cube ( s , center = true ) ;
}
}
2019-03-31 22:36:13 +00:00
}
}
2019-03-23 04:13:18 +00:00
// Module: back_half()
//
// Usage:
2019-05-02 19:05:22 +00:00
// back_half([s], [y]) ...
// back_half(planar=true, [s], [y]) ...
2019-03-23 04:13:18 +00:00
//
// Description:
// Slices an object at a vertical X-Z cut plane, and masks away everything that is in front of it.
//
// Arguments:
2019-12-17 03:19:17 +00:00
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may be incorrect. Default: 10000
2019-05-02 19:05:22 +00:00
// y = The Y coordinate of the cut-plane. Default: 0
2019-03-31 23:39:15 +00:00
// planar = If true, this becomes a 2D operation.
2019-03-23 04:13:18 +00:00
//
// Examples:
// back_half() sphere(r=20);
2019-05-02 19:05:22 +00:00
// back_half(y=8) sphere(r=20);
2019-03-31 23:39:15 +00:00
// Example(2D):
// back_half(planar=true) circle(r=20);
2020-01-15 22:24:57 +00:00
module back_half ( s = 1000 , y = 0 , planar = false )
2019-03-31 22:36:13 +00:00
{
2019-04-19 06:32:17 +00:00
dir = BACK ;
2019-05-01 07:43:27 +00:00
difference ( ) {
children ( ) ;
2019-05-02 19:05:22 +00:00
translate ( [ 0 , y , 0 ] - dir * s / 2 ) {
2019-05-01 07:43:27 +00:00
if ( planar ) {
square ( s , center = true ) ;
} else {
cube ( s , center = true ) ;
}
}
}
}
// Module: bottom_half()
//
// Usage:
2019-05-02 19:05:22 +00:00
// bottom_half([s], [z]) ...
2019-05-01 07:43:27 +00:00
//
// Description:
// Slices an object at a horizontal X-Y cut plane, and masks away everything that is above it.
//
// Arguments:
2019-12-17 03:19:17 +00:00
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may be incorrect. Default: 10000
2019-05-02 19:05:22 +00:00
// z = The Z coordinate of the cut-plane. Default: 0
2019-05-01 07:43:27 +00:00
//
// Examples:
// bottom_half() sphere(r=20);
2019-05-02 19:05:22 +00:00
// bottom_half(z=-10) sphere(r=20);
2020-01-15 22:24:57 +00:00
module bottom_half ( s = 1000 , z = 0 )
2019-05-01 07:43:27 +00:00
{
2019-05-02 19:05:22 +00:00
dir = DOWN ;
2019-05-01 07:43:27 +00:00
difference ( ) {
children ( ) ;
2019-05-02 19:05:22 +00:00
translate ( [ 0 , 0 , z ] - dir * s / 2 ) {
cube ( s , center = true ) ;
2019-05-01 07:43:27 +00:00
}
}
}
// Module: top_half()
//
// Usage:
2019-05-02 19:05:22 +00:00
// top_half([s], [z]) ...
2019-05-01 07:43:27 +00:00
//
// Description:
// Slices an object at a horizontal X-Y cut plane, and masks away everything that is below it.
//
// Arguments:
2019-12-17 03:19:17 +00:00
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may be incorrect. Default: 10000
2019-05-02 19:05:22 +00:00
// z = The Z coordinate of the cut-plane. Default: 0
2019-05-01 07:43:27 +00:00
//
// Examples(Spin):
// top_half() sphere(r=20);
2019-05-02 19:05:22 +00:00
// top_half(z=5) sphere(r=20);
2020-01-15 22:24:57 +00:00
module top_half ( s = 1000 , z = 0 )
2019-05-01 07:43:27 +00:00
{
2019-05-02 19:05:22 +00:00
dir = UP ;
2019-05-01 07:43:27 +00:00
difference ( ) {
children ( ) ;
2019-05-02 19:05:22 +00:00
translate ( [ 0 , 0 , z ] - dir * s / 2 ) {
cube ( s , center = true ) ;
2019-03-31 23:39:15 +00:00
}
2019-03-31 22:36:13 +00:00
}
}
2019-03-23 04:13:18 +00:00
// Module: chain_hull()
//
// Usage:
// chain_hull() ...
//
// Description:
// Performs hull operations between consecutive pairs of children,
// then unions all of the hull results. This can be a very slow
// operation, but it can provide results that are hard to get
// otherwise.
//
2019-08-06 23:43:41 +00:00
// Side Effects:
// `$idx` is set to the index value of the first child of each hulling pair, and can be used to modify each child pair individually.
// `$primary` is set to true when the child is the first in a chain pair.
//
2019-03-23 04:13:18 +00:00
// Example:
// chain_hull() {
// cube(5, center=true);
// translate([30, 0, 0]) sphere(d=15);
// translate([60, 30, 0]) cylinder(d=10, h=20);
// translate([60, 60, 0]) cube([10,1,20], center=false);
2018-11-19 23:14:02 +00:00
// }
2019-08-06 23:43:41 +00:00
// Example: Using `$idx` and `$primary`
// chain_hull() {
// zrot( 0) right(100) if ($primary) cube(5+3*$idx,center=true); else sphere(r=10+3*$idx);
// zrot( 45) right(100) if ($primary) cube(5+3*$idx,center=true); else sphere(r=10+3*$idx);
// zrot( 90) right(100) if ($primary) cube(5+3*$idx,center=true); else sphere(r=10+3*$idx);
// zrot(135) right(100) if ($primary) cube(5+3*$idx,center=true); else sphere(r=10+3*$idx);
// zrot(180) right(100) if ($primary) cube(5+3*$idx,center=true); else sphere(r=10+3*$idx);
// }
2019-03-23 04:13:18 +00:00
module chain_hull ( )
{
union ( ) {
if ( $children = = 1 ) {
children ( ) ;
} else if ( $children > 1 ) {
2019-05-27 05:34:46 +00:00
for ( i = [ 1 : 1 : $children - 1 ] ) {
2019-08-06 23:43:41 +00:00
$ idx = i ;
2019-03-23 04:13:18 +00:00
hull ( ) {
2019-08-06 23:43:41 +00:00
let ( $ primary = true ) children ( i - 1 ) ;
let ( $ primary = false ) children ( i ) ;
2019-03-23 04:13:18 +00:00
}
}
}
}
}
2018-11-19 23:14:02 +00:00
2017-08-30 00:00:16 +00:00
2019-07-15 23:40:21 +00:00
// Module: round3d()
// Usage:
// round3d(r) ...
// round3d(or) ...
// round3d(ir) ...
// round3d(or, ir) ...
// Description:
// Rounds arbitrary 3D objects. Giving `r` rounds all concave and convex corners. Giving just `ir`
// rounds just concave corners. Giving just `or` rounds convex corners. Giving both `ir` and `or`
// can let you round to different radii for concave and convex corners. The 3D object must not have
// any parts narrower than twice the `or` radius. Such parts will disappear. This is an *extremely*
// slow operation. I cannot emphasize enough just how slow it is. It uses `minkowski()` multiple times.
2019-07-16 03:58:13 +00:00
// Use this as a last resort. This is so slow that no example images will be rendered.
2019-07-15 23:40:21 +00:00
// Arguments:
// r = Radius to round all concave and convex corners to.
// or = Radius to round only outside (convex) corners to. Use instead of `r`.
// ir = Radius to round only inside (concave) corners to. Use instead of `r`.
module round3d ( r , or , ir , size = 100 )
{
or = get_radius ( r1 = or , r = r , dflt = 0 ) ;
ir = get_radius ( r1 = ir , r = r , dflt = 0 ) ;
offset3d ( or , size = size )
offset3d ( - ir - or , size = size )
offset3d ( ir , size = size )
children ( ) ;
}
// Module: offset3d()
// Usage:
// offset3d(r, [size], [convexity]);
// Description:
// Expands or contracts the surface of a 3D object by a given amount. This is very, very slow.
// No really, this is unbearably slow. It uses `minkowski()`. Use this as a last resort.
2019-07-16 03:58:13 +00:00
// This is so slow that no example images will be rendered.
2019-07-15 23:40:21 +00:00
// Arguments:
// r = Radius to expand object by. Negative numbers contract the object.
// size = Maximum size of object to be contracted, given as a scalar. Default: 100
// convexity = Max number of times a line could intersect the walls of the object. Default: 10
module offset3d ( r = 1 , size = 100 , convexity = 10 ) {
n = quant ( max ( 8 , segs ( abs ( r ) ) ) , 4 ) ;
if ( r = = 0 ) {
children ( ) ;
} else if ( r > 0 ) {
render ( convexity = convexity )
minkowski ( ) {
children ( ) ;
sphere ( r , $fn = n ) ;
}
} else {
size2 = size * [ 1 , 1 , 1 ] ;
size1 = size2 * 1.02 ;
render ( convexity = convexity )
difference ( ) {
cube ( size2 , center = true ) ;
minkowski ( ) {
difference ( ) {
cube ( size1 , center = true ) ;
children ( ) ;
}
sphere ( - r , $fn = n ) ;
}
}
}
}
2019-07-16 04:02:04 +00:00
//////////////////////////////////////////////////////////////////////
// Section: 2D Mutators
//////////////////////////////////////////////////////////////////////
// Module: round2d()
// Usage:
// round2d(r) ...
// round2d(or) ...
// round2d(ir) ...
// round2d(or, ir) ...
// Description:
// Rounds arbitrary 2D objects. Giving `r` rounds all concave and convex corners. Giving just `ir`
// rounds just concave corners. Giving just `or` rounds convex corners. Giving both `ir` and `or`
// can let you round to different radii for concave and convex corners. The 2D object must not have
// any parts narrower than twice the `or` radius. Such parts will disappear.
// Arguments:
// r = Radius to round all concave and convex corners to.
// or = Radius to round only outside (convex) corners to. Use instead of `r`.
// ir = Radius to round only inside (concave) corners to. Use instead of `r`.
// Examples(2D):
// round2d(r=10) {square([40,100], center=true); square([100,40], center=true);}
// round2d(or=10) {square([40,100], center=true); square([100,40], center=true);}
// round2d(ir=10) {square([40,100], center=true); square([100,40], center=true);}
// round2d(or=16,ir=8) {square([40,100], center=true); square([100,40], center=true);}
module round2d ( r , or , ir )
{
or = get_radius ( r1 = or , r = r , dflt = 0 ) ;
ir = get_radius ( r1 = ir , r = r , dflt = 0 ) ;
2020-01-14 23:29:09 +00:00
offset ( or ) offset ( - ir - or ) offset ( delta = ir , chamfer = true ) children ( ) ;
2019-07-16 04:02:04 +00:00
}
2019-04-03 01:52:37 +00:00
// Module: shell2d()
// Usage:
// shell2d(thickness, [or], [ir], [fill], [round])
// Description:
2019-07-15 23:40:21 +00:00
// Creates a hollow shell from 2D children, with optional rounding.
2019-04-03 01:52:37 +00:00
// Arguments:
// thickness = Thickness of the shell. Positive to expand outward, negative to shrink inward, or a two-element list to do both.
// or = Radius to round convex corners/pointy bits on the outside of the shell.
2019-04-25 02:42:38 +00:00
// ir = Radius to round concave corners on the outside of the shell.
2019-04-03 01:52:37 +00:00
// round = Radius to round convex corners/pointy bits on the inside of the shell.
2019-04-25 02:42:38 +00:00
// fill = Radius to round concave corners on the inside of the shell.
2019-04-03 01:52:37 +00:00
// Examples(2D):
// shell2d(10) {square([40,100], center=true); square([100,40], center=true);}
// shell2d(-10) {square([40,100], center=true); square([100,40], center=true);}
// shell2d([-10,10]) {square([40,100], center=true); square([100,40], center=true);}
// shell2d(10,or=10) {square([40,100], center=true); square([100,40], center=true);}
// shell2d(10,ir=10) {square([40,100], center=true); square([100,40], center=true);}
// shell2d(10,round=10) {square([40,100], center=true); square([100,40], center=true);}
// shell2d(10,fill=10) {square([40,100], center=true); square([100,40], center=true);}
// shell2d(8,or=16,ir=8,round=16,fill=8) {square([40,100], center=true); square([100,40], center=true);}
module shell2d ( thickness , or = 0 , ir = 0 , fill = 0 , round = 0 )
{
2019-04-20 00:02:17 +00:00
thickness = is_num ( thickness ) ? (
2019-04-03 01:52:37 +00:00
thickness < 0 ? [ thickness , 0 ] : [ 0 , thickness ]
) : ( thickness [ 0 ] > thickness [ 1 ] ) ? (
[ thickness [ 1 ] , thickness [ 0 ] ]
) : thickness ;
difference ( ) {
round2d ( or = or , ir = ir )
offset ( delta = thickness [ 1 ] )
children ( ) ;
round2d ( or = fill , ir = round )
offset ( delta = thickness [ 0 ] )
children ( ) ;
}
}
2019-07-05 22:01:42 +00:00
//////////////////////////////////////////////////////////////////////
// Section: Colors
//////////////////////////////////////////////////////////////////////
// Function&Module: HSL()
// Usage:
// HSL(h,[s],[l],[a]) ...
// rgb = HSL(h,[s],[l]);
// Description:
// When called as a function, returns the [R,G,B] color for the given hue `h`, saturation `s`, and lightness `l` from the HSL colorspace.
// When called as a module, sets the color to the given hue `h`, saturation `s`, and lightness `l` from the HSL colorspace.
// Arguments:
// h = The hue, given as a value between 0 and 360. 0=red, 60=yellow, 120=green, 180=cyan, 240=blue, 300=magenta.
2019-07-05 22:07:59 +00:00
// s = The saturation, given as a value between 0 and 1. 0 = grayscale, 1 = vivid colors. Default: 1
// l = The lightness, between 0 and 1. 0 = black, 0.5 = bright colors, 1 = white. Default: 0.5
// a = When called as a module, specifies the alpha channel as a value between 0 and 1. 0 = fully transparent, 1=opaque. Default: 1
2019-07-05 22:01:42 +00:00
// Example:
2019-07-05 22:07:59 +00:00
// HSL(h=120,s=1,l=0.5) sphere(d=60);
2019-07-05 22:01:42 +00:00
// Example:
// rgb = HSL(h=270,s=0.75,l=0.6);
2019-07-05 22:07:59 +00:00
// color(rgb) cube(60, center=true);
2019-07-05 22:01:42 +00:00
function HSL ( h , s = 1 , l = 0.5 ) =
let (
h = posmod ( h , 360 )
) [
for ( n = [ 0 , 8 , 4 ] ) let (
k = ( n + h / 30 ) % 12
) l - s * min ( l , 1 - l ) * max ( min ( k - 3 , 9 - k , 1 ) , - 1 )
] ;
module HSL ( h , s = 1 , l = 0.5 , a = 1 ) color ( HSL ( h , s , l ) , a ) children ( ) ;
// Function&Module: HSV()
// Usage:
// HSV(h,[s],[v],[a]) ...
// rgb = HSV(h,[s],[v]);
// Description:
// When called as a function, returns the [R,G,B] color for the given hue `h`, saturation `s`, and value `v` from the HSV colorspace.
// When called as a module, sets the color to the given hue `h`, saturation `s`, and value `v` from the HSV colorspace.
// Arguments:
// h = The hue, given as a value between 0 and 360. 0=red, 60=yellow, 120=green, 180=cyan, 240=blue, 300=magenta.
2019-07-05 22:07:59 +00:00
// s = The saturation, given as a value between 0 and 1. 0 = grayscale, 1 = vivid colors. Default: 1
// v = The value, between 0 and 1. 0 = darkest black, 1 = bright. Default: 1
// a = When called as a module, specifies the alpha channel as a value between 0 and 1. 0 = fully transparent, 1=opaque. Default: 1
2019-07-05 22:01:42 +00:00
// Example:
2019-07-05 22:07:59 +00:00
// HSV(h=120,s=1,v=1) sphere(d=60);
2019-07-05 22:01:42 +00:00
// Example:
// rgb = HSV(h=270,s=0.75,v=0.9);
2019-07-05 22:07:59 +00:00
// color(rgb) cube(60, center=true);
2019-07-05 22:01:42 +00:00
function HSV ( h , s = 1 , v = 1 ) =
let (
h = posmod ( h , 360 ) ,
v2 = v * ( 1 - s ) ,
r = lookup ( h , [ [ 0 , v ] , [ 60 , v ] , [ 120 , v2 ] , [ 240 , v2 ] , [ 300 , v ] , [ 360 , v ] ] ) ,
g = lookup ( h , [ [ 0 , v2 ] , [ 60 , v ] , [ 180 , v ] , [ 240 , v2 ] , [ 360 , v2 ] ] ) ,
b = lookup ( h , [ [ 0 , v2 ] , [ 120 , v2 ] , [ 180 , v ] , [ 300 , v ] , [ 360 , v2 ] ] )
) [ r , g , b ] ;
module HSV ( h , s = 1 , v = 1 , a = 1 ) color ( HSV ( h , s , v ) , a ) children ( ) ;
2019-07-05 23:07:12 +00:00
// Module: rainbow()
// Usage:
// rainbow(list) ...
// Description:
// Iterates the list, displaying children in different colors for each list item.
// This is useful for debugging lists of paths and such.
// Arguments:
// list = The list of items to iterate through.
2019-09-24 10:50:09 +00:00
// stride = Consecutive colors stride around the color wheel divided into this many parts.
2019-07-05 23:07:12 +00:00
// Side Effects:
// Sets the color to progressive values along the ROYGBIV spectrum for each item.
// Sets `$idx` to the index of the current item in `list` that we want to show.
// Sets `$item` to the current item in `list` that we want to show.
2019-07-05 23:09:53 +00:00
// Example(2D):
2019-07-05 23:07:12 +00:00
// rainbow(["Foo","Bar","Baz"]) fwd($idx*10) text(text=$item,size=8,halign="center",valign="center");
2019-07-05 23:09:53 +00:00
// Example(2D):
2019-07-05 23:07:12 +00:00
// rgn = [circle(d=45,$fn=3), circle(d=75,$fn=4), circle(d=50)];
2019-07-12 20:11:13 +00:00
// rainbow(rgn) stroke($item, closed=true);
2019-09-24 10:50:09 +00:00
module rainbow ( list , stride = 1 )
{
ll = len ( list ) ;
huestep = 360 / ll ;
hues = [ for ( i = [ 0 : 1 : ll - 1 ] ) posmod ( i * huestep + i * 360 / stride , 360 ) ] ;
for ( $ idx = idx ( list ) ) {
$ item = list [ $ idx ] ;
HSV ( h = hues [ $ idx ] ) children ( ) ;
}
}
2019-07-05 23:07:12 +00:00
2019-04-03 01:52:37 +00:00
2017-08-30 00:00:16 +00:00
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap