BOSL2/paths.scad

486 lines
15 KiB
OpenSCAD
Raw Normal View History

2017-08-30 00:00:16 +00:00
//////////////////////////////////////////////////////////////////////
// LibFile: paths.scad
// Polylines, polygons and paths.
// To use, add the following lines to the beginning of your file:
// ```
// include <BOSL2/std.scad>
// ```
2017-08-30 00:00:16 +00:00
//////////////////////////////////////////////////////////////////////
include <BOSL2/triangulation.scad>
2017-08-30 00:00:16 +00:00
// Section: Functions
// Function: simplify2d_path()
// Description:
// Takes a 2D polyline and removes unnecessary collinear points.
// Usage:
// simplify2d_path(path, [eps])
// Arguments:
// path = A list of 2D path points.
// eps = Largest angle delta between segments to count as colinear. Default: 1e-6
2019-04-16 22:34:54 +00:00
function simplify2d_path(path, eps=1e-6) = simplify_path(path, eps=eps);
// Function: simplify3d_path()
// Description:
// Takes a 3D polyline and removes unnecessary collinear points.
// Usage:
// simplify3d_path(path, [eps])
// Arguments:
// path = A list of 3D path points.
// eps = Largest angle delta between segments to count as colinear. Default: 1e-6
2019-04-16 22:34:54 +00:00
function simplify3d_path(path, eps=1e-6) = simplify_path(path, eps=eps);
2019-03-27 06:22:38 +00:00
// Function: path_length()
// Usage:
// path3d_length(path)
// Description:
// Returns the length of the path.
// Arguments:
// path = The list of points of the path to measure.
// Example:
// path = [[0,0], [5,35], [60,-25], [80,0]];
// echo(path_length(path));
function path_length(path) =
len(path)<2? 0 :
sum([for (i = [0:len(path)-2]) norm(path[i+1]-path[i])]);
// Function: path2d_regular_ngon()
// Description:
// Returns a 2D open counter-clockwise path of the vertices of a regular polygon of `n` sides.
// Usage:
// path2d_regular_ngon(n, r|d, [cp], [scale]);
// Arguments:
// n = Number of polygon sides.
// r = Radius of regular polygon.
// d = Radius of regular polygon.
// cp = Centerpoint of regular polygon. Default: `[0,0]`
// scale = [X,Y] scaling factors for each axis. Default: `[1,1]`
// Example(2D):
// trace_polyline(path2d_regular_ngon(n=12, r=50), N=1, showpts=true);
2019-04-16 22:34:54 +00:00
function path2d_regular_ngon(n=6, r=undef, d=undef, cp=[0,0], scale=[1,1]) =
let(
rr=get_radius(r=r, d=d, dflt=100)
) [
for (i=[0:n-1])
rr * [cos(i*360/n)*scale.x, sin(i*360/n)*scale.y] + cp
];
// Function: path3d_spiral()
// Description:
// Returns a 3D spiral path.
// Usage:
// path3d_spiral(turns, h, n, r|d, [cp], [scale]);
// Arguments:
// h = Height of spiral.
// turns = Number of turns in spiral.
// n = Number of spiral sides.
// r = Radius of spiral.
// d = Radius of spiral.
// cp = Centerpoint of spiral. Default: `[0,0]`
// scale = [X,Y] scaling factors for each axis. Default: `[1,1]`
// Example(3D):
// trace_polyline(path3d_spiral(turns=2.5, h=100, n=24, r=50), N=1, showpts=true);
function path3d_spiral(turns=3, h=100, n=12, r=undef, d=undef, cp=[0,0], scale=[1,1]) = let(
rr=get_radius(r=r, d=d, dflt=100),
cnt=floor(turns*n),
dz=h/cnt
) [
for (i=[0:cnt]) [
rr * cos(i*360/n) * scale.x + cp.x,
rr * sin(i*360/n) * scale.y + cp.y,
i*dz
]
];
// Function: points_along_path3d()
// Usage:
// points_along_path3d(polyline, path);
// Description:
// Calculates the vertices needed to create a `polyhedron()` of the
// extrusion of `polyline` along `path`. The closed 2D path shold be
// centered on the XY plane. The 2D path is extruded perpendicularly
// along the 3D path. Produces a list of 3D vertices. Vertex count
// is `len(polyline)*len(path)`. Gives all the reoriented vertices
// for `polyline` at the first point in `path`, then for the second,
// and so on.
// Arguments:
// polyline = A closed list of 2D path points.
// path = A list of 3D path points.
function points_along_path3d(
polyline, // The 2D polyline to drag along the 3D path.
path, // The 3D polyline path to follow.
q=Q_Ident(), // Used in recursion
n=0 // Used in recursion
) = let(
end = len(path)-1,
v1 = (n == 0)? [0, 0, 1] : normalize(path[n]-path[n-1]),
v2 = (n == end)? normalize(path[n]-path[n-1]) : normalize(path[n+1]-path[n]),
crs = cross(v1, v2),
axis = norm(crs) <= 0.001? [0, 0, 1] : crs,
2019-03-25 10:52:09 +00:00
ang = vector_angle(v1, v2),
hang = ang * (n==0? 1.0 : 0.5),
hrot = Quat(axis, hang),
arot = Quat(axis, ang),
roth = Q_Mul(hrot, q),
rotm = Q_Mul(arot, q)
) concat(
[for (i = [0:len(polyline)-1]) Q_Rot_Vector(point3d(polyline[i]),roth) + path[n]],
(n == end)? [] : points_along_path3d(polyline, path, rotm, n+1)
);
// Section: 2D Modules
// Module: modulated_circle()
// Description:
// Creates a 2D polygon circle, modulated by one or more superimposed sine waves.
// Arguments:
2017-08-30 00:00:16 +00:00
// r = radius of the base circle.
// sines = array of [amplitude, frequency] pairs, where the frequency is the number of times the cycle repeats around the circle.
// Example(2D):
2017-08-30 00:00:16 +00:00
// modulated_circle(r=40, sines=[[3, 11], [1, 31]], $fn=6);
module modulated_circle(r=40, sines=[10])
{
freqs = len(sines)>0? [for (i=sines) i[1]] : [5];
points = [
for (a = [0 : (360/segs(r)/max(freqs)) : 360])
let(nr=r+sum_of_sines(a,sines)) [nr*cos(a), nr*sin(a)]
];
polygon(points);
}
// Section: 3D Modules
// Module: extrude_from_to()
// Description:
// Extrudes a 2D shape between the points pt1 and pt2. Takes as children a set of 2D shapes to extrude.
// Arguments:
2019-02-03 08:12:37 +00:00
// pt1 = starting point of extrusion.
// pt2 = ending point of extrusion.
// convexity = max number of times a line could intersect a wall of the 2D shape being extruded.
// twist = number of degrees to twist the 2D shape over the entire extrusion length.
// scale = scale multiplier for end of extrusion compared the start.
// slices = Number of slices along the extrusion to break the extrusion into. Useful for refining `twist` extrusions.
// Example(FlatSpin):
2019-02-03 08:12:37 +00:00
// extrude_from_to([0,0,0], [10,20,30], convexity=4, twist=360, scale=3.0, slices=40) {
// xspread(3) circle(3, $fn=32);
// }
module extrude_from_to(pt1, pt2, convexity=undef, twist=undef, scale=undef, slices=undef) {
2019-02-06 11:35:13 +00:00
rtp = xyz_to_spherical(pt2-pt1);
2019-02-03 08:12:37 +00:00
translate(pt1) {
2019-02-06 11:35:13 +00:00
rotate([0, rtp[2], rtp[1]]) {
linear_extrude(height=rtp[0], convexity=convexity, center=false, slices=slices, twist=twist, scale=scale) {
children();
2019-02-03 08:12:37 +00:00
}
}
}
}
// Module: extrude_2d_hollow()
// Description:
// Similar to linear_extrude(), except the result is a hollow shell.
// Arguments:
2017-08-30 00:00:16 +00:00
// wall = thickness of shell wall.
// height = height of extrusion.
// twist = degrees of twist, from bottom to top.
// slices = how many slices to use when making extrusion.
2019-05-03 18:32:40 +00:00
// orient = Orientation of the spiral. Use the `ORIENT_` constants from `constants.scad`. Default: `ORIENT_Z`.
// anchor = Alignment of the spiral. Use the constants from `constants.scad`. Default: `BOTTOM`.
// center = If given, overrides `anchor`. A true value sets `anchor=CENTER`, false sets `anchor=BOTTOM`.
2017-08-30 00:00:16 +00:00
// Example:
// extrude_2d_hollow(wall=2, height=100, twist=90, slices=50)
// circle(r=40, $fn=6);
2019-05-03 18:32:40 +00:00
module extrude_2d_hollow(wall=2, height=50, twist=90, slices=60, center=undef, orient=ORIENT_Z, anchor=BOTTOM)
2017-08-30 00:00:16 +00:00
{
2019-04-23 03:55:03 +00:00
orient_and_anchor([0,0,height], orient, anchor, center, chain=true) {
2019-03-23 10:01:06 +00:00
linear_extrude(height=height, twist=twist, slices=slices, center=true) {
difference() {
2017-08-30 00:00:16 +00:00
children();
offset(r=-wall) {
children();
}
2017-08-30 00:00:16 +00:00
}
}
children();
2017-08-30 00:00:16 +00:00
}
}
// Module: extrude_2dpath_along_spiral()
// Description:
// Takes a closed 2D polyline path, centered on the XY plane, and
// extrudes it along a 3D spiral path of a given radius, height and twist.
// Arguments:
2017-08-30 00:00:16 +00:00
// polyline = Array of points of a polyline path, to be extruded.
// h = height of the spiral to extrude along.
// r = radius of the spiral to extrude along.
// twist = number of degrees of rotation to spiral up along height.
2019-05-03 18:32:40 +00:00
// orient = Orientation of the spiral. Use the `ORIENT_` constants from `constants.scad`. Default: `ORIENT_Z`.
// anchor = Alignment of the spiral. Use the constants from `constants.scad`. Default: `BOTTOM`.
// center = If given, overrides `anchor`. A true value sets `anchor=CENTER`, false sets `anchor=BOTTOM`.
2017-08-30 00:00:16 +00:00
// Example:
// poly = [[-10,0], [-3,-5], [3,-5], [10,0], [0,-30]];
// extrude_2dpath_along_spiral(poly, h=200, r=50, twist=1080, $fn=36);
module extrude_2dpath_along_spiral(polyline, h, r, twist=360, center=undef, orient=ORIENT_Z, anchor=BOTTOM) {
2017-08-30 00:00:16 +00:00
pline_count = len(polyline);
steps = ceil(segs(r)*(twist/360));
poly_points = [
for (
p = [0:steps]
) let (
a = twist * (p/steps),
dx = r*cos(a),
dy = r*sin(a),
dz = h * (p/steps),
pts = matrix4_apply(
polyline, [
matrix4_xrot(90),
matrix4_zrot(a),
matrix4_translate([dx, dy, dz-h/2])
]
)
) for (pt = pts) pt
2017-08-30 00:00:16 +00:00
];
poly_faces = concat(
[[for (b = [0:pline_count-1]) b]],
[
for (
p = [0:steps-1],
b = [0:pline_count-1],
i = [0:1]
) let (
b2 = (b == pline_count-1)? 0 : b+1,
p0 = p * pline_count + b,
p1 = p * pline_count + b2,
p2 = (p+1) * pline_count + b2,
p3 = (p+1) * pline_count + b,
pt = (i==0)? [p0, p2, p1] : [p0, p3, p2]
) pt
],
[[for (b = [pline_count-1:-1:0]) b+(steps)*pline_count]]
);
2018-09-01 09:38:47 +00:00
tri_faces = triangulate_faces(poly_points, poly_faces);
2019-04-23 03:55:03 +00:00
orient_and_anchor([r,r,h], orient, anchor, center, chain=true) {
polyhedron(points=poly_points, faces=tri_faces, convexity=10);
children();
}
2017-08-30 00:00:16 +00:00
}
// Module: extrude_2dpath_along_3dpath()
// Description:
// Takes a closed 2D path `polyline`, centered on the XY plane, and extrudes it perpendicularly along a 3D path `path`, forming a solid.
// Arguments:
2017-08-30 00:00:16 +00:00
// polyline = Array of points of a polyline path, to be extruded.
// path = Array of points of a polyline path, to extrude along.
// ang = Angle in degrees to rotate 2D polyline before extrusion.
2018-10-09 22:35:40 +00:00
// convexity = max number of surfaces any single ray could pass through.
// Example(FlatSpin):
// shape = [[0,-10], [5,-3], [5,3], [0,10], [30,0]];
// path = concat(
// [for (a=[30:30:180]) [50*cos(a)+50, 50*sin(a), 20*sin(a)]],
// [for (a=[330:-30:180]) [50*cos(a)-50, 50*sin(a), 20*sin(a)]]
// );
// extrude_2dpath_along_3dpath(shape, path, ang=140);
module extrude_2dpath_along_3dpath(polyline, path, ang=0, convexity=10) {
2017-08-30 00:00:16 +00:00
pline_count = len(polyline);
path_count = len(path);
polyline = rotate_points2d(path2d(polyline), ang);
2017-08-30 00:00:16 +00:00
poly_points = points_along_path3d(polyline, path);
poly_faces = concat(
[[for (b = [0:pline_count-1]) b]],
[
for (
p = [0:path_count-2],
b = [0:pline_count-1],
i = [0:1]
) let (
b2 = (b == pline_count-1)? 0 : b+1,
p0 = p * pline_count + b,
p1 = p * pline_count + b2,
p2 = (p+1) * pline_count + b2,
p3 = (p+1) * pline_count + b,
pt = (i==0)? [p0, p2, p1] : [p0, p3, p2]
) pt
],
[[for (b = [pline_count-1:-1:0]) b+(path_count-1)*pline_count]]
);
2018-09-01 09:38:47 +00:00
tri_faces = triangulate_faces(poly_points, poly_faces);
polyhedron(points=poly_points, faces=tri_faces, convexity=convexity);
2017-08-30 00:00:16 +00:00
}
// Module: extrude_2d_shapes_along_3dpath()
// Description:
// Extrudes 2D children along a 3D polyline path. This may be slow.
// Arguments:
2018-11-24 09:37:56 +00:00
// path = array of points for the bezier path to extrude along.
// convexity = maximum number of walls a ran can pass through.
// clipsize = increase if artifacts are left. Default: 1000
// Example(FlatSpin):
// path = [ [0, 0, 0], [33, 33, 33], [66, 33, 40], [100, 0, 0], [150,0,0] ];
// extrude_2d_shapes_along_3dpath(path) circle(r=10, $fn=6);
module extrude_2d_shapes_along_3dpath(path, convexity=10, clipsize=100) {
function polyquats(path, q=Q_Ident(), v=[0,0,1], i=0) = let(
v2 = path[i+1] - path[i],
2019-03-25 10:52:09 +00:00
ang = vector_angle(v,v2),
axis = ang>0.001? normalize(cross(v,v2)) : [0,0,1],
newq = Q_Mul(Quat(axis, ang), q),
dist = norm(v2)
) i < (len(path)-2)?
concat([[dist, newq, ang]], polyquats(path, newq, v2, i+1)) :
[[dist, newq, ang]];
epsilon = 0.0001; // Make segments ever so slightly too long so they overlap.
2018-11-24 09:37:56 +00:00
ptcount = len(path);
pquats = polyquats(path);
2018-11-24 09:37:56 +00:00
for (i = [0 : ptcount-2]) {
pt1 = path[i];
pt2 = path[i+1];
dist = pquats[i][0];
q = pquats[i][1];
difference() {
translate(pt1) {
Qrot(q) {
down(clipsize/2/2) {
linear_extrude(height=dist+clipsize/2, convexity=convexity) {
2018-11-24 09:37:56 +00:00
children();
}
}
}
}
translate(pt1) {
hq = (i > 0)? Q_Slerp(q, pquats[i-1][1], 0.5) : q;
Qrot(hq) down(clipsize/2+epsilon) cube(clipsize, center=true);
}
translate(pt2) {
hq = (i < ptcount-2)? Q_Slerp(q, pquats[i+1][1], 0.5) : q;
Qrot(hq) up(clipsize/2+epsilon) cube(clipsize, center=true);
2018-11-24 09:37:56 +00:00
}
}
}
}
// Module: trace_polyline()
// Description:
// Renders lines between each point of a polyline path.
// Can also optionally show the individual vertex points.
// Arguments:
// pline = The array of points in the polyline.
// showpts = If true, draw vertices and control points.
// N = Mark the first and every Nth vertex after in a different color and shape.
// size = Diameter of the lines drawn.
// color = Color to draw the lines (but not vertices) in.
// Example(FlatSpin):
// polyline = [for (a=[0:30:210]) 10*[cos(a), sin(a), sin(a)]];
// trace_polyline(polyline, showpts=true, size=0.5, color="lightgreen");
module trace_polyline(pline, N=1, showpts=false, size=1, color="yellow") {
if (showpts) {
for (i = [0:len(pline)-1]) {
translate(pline[i]) {
if (i%N == 0) {
color("blue") sphere(d=size*2.5, $fn=8);
} else {
color("red") {
cylinder(d=size/2, h=size*3, center=true, $fn=8);
xrot(90) cylinder(d=size/2, h=size*3, center=true, $fn=8);
yrot(90) cylinder(d=size/2, h=size*3, center=true, $fn=8);
}
}
}
}
}
for (i = [0:len(pline)-2]) {
if (N!=3 || (i%N) != 1) {
color(color) extrude_from_to(pline[i], pline[i+1]) circle(d=size/2);
}
}
}
// Module: debug_polygon()
// Description: A drop-in replacement for `polygon()` that renders and labels the path points.
// Arguments:
// points = The array of 2D polygon vertices.
// paths = The path connections between the vertices.
// convexity = The max number of walls a ray can pass through the given polygon paths.
// Example(2D):
// debug_polygon(
// points=concat(
// path2d_regular_ngon(r=10, n=8),
// path2d_regular_ngon(r=8, n=8)
// ),
// paths=[
// [for (i=[0:7]) i],
// [for (i=[15:-1:8]) i]
// ]
// );
module debug_polygon(points, paths=undef, convexity=2, size=1)
{
pths = is_undef(paths)? [for (i=[0:len(points)-1]) i] : is_num(paths[0])? [paths] : paths;
echo(points=points);
echo(paths=paths);
linear_extrude(height=0.01, convexity=convexity, center=true) {
polygon(points=points, paths=paths, convexity=convexity);
}
for (i = [0:len(points)-1]) {
color("red") {
up(0.2) {
translate(points[i]) {
linear_extrude(height=0.1, convexity=10, center=true) {
text(text=str(i), size=size, halign="center", valign="center");
}
}
}
}
}
for (j = [0:len(paths)-1]) {
path = paths[j];
translate(points[path[0]]) {
color("cyan") up(0.1) cylinder(d=size*1.5, h=0.01, center=false, $fn=12);
}
translate(points[path[len(path)-1]]) {
color("pink") up(0.11) cylinder(d=size*1.5, h=0.01, center=false, $fn=4);
}
for (i = [0:len(path)-1]) {
midpt = (points[path[i]] + points[path[(i+1)%len(path)]])/2;
color("blue") {
up(0.2) {
translate(midpt) {
linear_extrude(height=0.1, convexity=10, center=true) {
text(text=str(chr(65+j),i), size=size/2, halign="center", valign="center");
}
}
}
}
}
}
}
2017-08-30 00:00:16 +00:00
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap