2017-08-30 00:00:16 +00:00
//////////////////////////////////////////////////////////////////////
2019-03-23 04:13:18 +00:00
// LibFile: paths.scad
2020-11-17 01:50:08 +00:00
// Support for polygons and paths.
2021-01-05 09:20:01 +00:00
// Includes:
2019-04-19 07:25:10 +00:00
// include <BOSL2/std.scad>
2017-08-30 00:00:16 +00:00
//////////////////////////////////////////////////////////////////////
2021-09-22 18:59:18 +00:00
// Section: Utility Functions
2019-03-23 04:13:18 +00:00
2020-01-30 22:00:10 +00:00
// Function: is_path()
// Usage:
2020-03-02 21:47:43 +00:00
// is_path(list, [dim], [fast])
2020-01-30 22:00:10 +00:00
// Description:
2020-03-02 21:47:43 +00:00
// Returns true if `list` is a path. A path is a list of two or more numeric vectors (AKA points).
// All vectors must of the same size, and may only contain numbers that are not inf or nan.
2020-03-03 02:39:57 +00:00
// By default the vectors in a path must be 2d or 3d. Set the `dim` parameter to specify a list
// of allowed dimensions, or set it to `undef` to allow any dimension.
2021-09-16 23:33:55 +00:00
// Example:
// bool1 = is_path([[3,4],[5,6]]); // Returns true
// bool2 = is_path([[3,4]]); // Returns false
// bool3 = is_path([[3,4],[4,5]],2); // Returns true
// bool4 = is_path([[3,4,3],[5,4,5]],2); // Returns false
// bool5 = is_path([[3,4,3],[5,4,5]],2); // Returns false
// bool6 = is_path([[3,4,5],undef,[4,5,6]]); // Returns false
// bool7 = is_path([[3,5],[undef,undef],[4,5]]); // Returns false
// bool8 = is_path([[3,4],[5,6],[5,3]]); // Returns true
// bool9 = is_path([3,4,5,6,7,8]); // Returns false
// bool10 = is_path([[3,4],[5,6]], dim=[2,3]);// Returns true
// bool11 = is_path([[3,4],[5,6]], dim=[1,3]);// Returns false
// bool12 = is_path([[3,4],"hello"], fast=true); // Returns true
// bool13 = is_path([[3,4],[3,4,5]]); // Returns false
// bool14 = is_path([[1,2,3,4],[2,3,4,5]]); // Returns false
// bool15 = is_path([[1,2,3,4],[2,3,4,5]],undef);// Returns true
2020-03-02 21:47:43 +00:00
// Arguments:
// list = list to check
// dim = list of allowed dimensions of the vectors in the path. Default: [2,3]
// fast = set to true for fast check that only looks at first entry. Default: false
function is_path ( list , dim = [ 2 , 3 ] , fast = false ) =
2020-08-11 14:15:49 +00:00
fast
? is_list ( list ) && is_vector ( list [ 0 ] )
: is_matrix ( list )
&& len ( list ) > 1
&& len ( list [ 0 ] ) > 0
&& ( is_undef ( dim ) || in_list ( len ( list [ 0 ] ) , force_list ( dim ) ) ) ;
2020-01-30 22:00:10 +00:00
// Function: is_closed_path()
// Usage:
// is_closed_path(path, [eps]);
2019-03-23 04:13:18 +00:00
// Description:
2020-01-30 22:00:10 +00:00
// Returns true if the first and last points in the given path are coincident.
function is_closed_path ( path , eps = EPSILON ) = approx ( path [ 0 ] , path [ len ( path ) - 1 ] , eps = eps ) ;
// Function: close_path()
2019-03-23 04:13:18 +00:00
// Usage:
2020-01-30 22:00:10 +00:00
// close_path(path);
// Description:
// If a path's last point does not coincide with its first point, closes the path so it does.
2021-03-20 08:37:46 +00:00
function close_path ( path , eps = EPSILON ) =
is_closed_path ( path , eps = eps ) ? path : concat ( path , [ path [ 0 ] ] ) ;
2020-01-30 22:00:10 +00:00
// Function: cleanup_path()
// Usage:
// cleanup_path(path);
// Description:
// If a path's last point coincides with its first point, deletes the last point in the path.
2021-03-20 08:37:46 +00:00
function cleanup_path ( path , eps = EPSILON ) =
is_closed_path ( path , eps = eps ) ? [ for ( i = [ 0 : 1 : len ( path ) - 2 ] ) path [ i ] ] : path ;
2020-01-30 22:00:10 +00:00
2021-09-22 18:59:18 +00:00
/// Internal Function: _path_select()
2021-09-18 23:11:08 +00:00
/// Usage:
/// _path_select(path,s1,u1,s2,u2,[closed]):
/// Description:
/// Returns a portion of a path, from between the `u1` part of segment `s1`, to the `u2` part of
/// segment `s2`. Both `u1` and `u2` are values between 0.0 and 1.0, inclusive, where 0 is the start
/// of the segment, and 1 is the end. Both `s1` and `s2` are integers, where 0 is the first segment.
/// Arguments:
/// path = The path to get a section of.
/// s1 = The number of the starting segment.
/// u1 = The proportion along the starting segment, between 0.0 and 1.0, inclusive.
/// s2 = The number of the ending segment.
/// u2 = The proportion along the ending segment, between 0.0 and 1.0, inclusive.
/// closed = If true, treat path as a closed polygon.
function _path_select ( path , s1 , u1 , s2 , u2 , closed = false ) =
2020-05-30 02:04:34 +00:00
let (
lp = len ( path ) ,
l = lp - ( closed ? 0 : 1 ) ,
u1 = s1 < 0 ? 0 : s1 > l ? 1 : u1 ,
u2 = s2 < 0 ? 0 : s2 > l ? 1 : u2 ,
s1 = constrain ( s1 , 0 , l ) ,
s2 = constrain ( s2 , 0 , l ) ,
pathout = concat (
( s1 < l && u1 < 1 ) ? [ lerp ( path [ s1 ] , path [ ( s1 + 1 ) % lp ] , u1 ) ] : [ ] ,
[ for ( i = [ s1 + 1 : 1 : s2 ] ) path [ i ] ] ,
( s2 < l && u2 > 0 ) ? [ lerp ( path [ s2 ] , path [ ( s2 + 1 ) % lp ] , u2 ) ] : [ ]
)
) pathout ;
2020-01-30 22:00:10 +00:00
2021-09-18 23:11:08 +00:00
// Function: path_merge_collinear()
2020-01-30 22:00:10 +00:00
// Description:
2021-09-18 23:11:08 +00:00
// Takes a path and removes unnecessary sequential collinear points.
2020-01-30 22:00:10 +00:00
// Usage:
2021-09-18 23:11:08 +00:00
// path_merge_collinear(path, [eps])
2019-03-23 04:13:18 +00:00
// Arguments:
2020-08-11 14:15:49 +00:00
// path = A list of path points of any dimension.
2021-09-20 22:34:22 +00:00
// closed = treat as closed polygon. Default: false
2020-01-30 22:00:10 +00:00
// eps = Largest positional variance allowed. Default: `EPSILON` (1-e9)
2021-09-20 22:34:22 +00:00
function path_merge_collinear ( path , closed = false , eps = EPSILON ) =
2020-08-11 14:15:49 +00:00
assert ( is_path ( path ) , "Invalid path." )
assert ( is_undef ( eps ) || ( is_finite ( eps ) && ( eps >= 0 ) ) , "Invalid tolerance." )
2021-03-06 10:26:39 +00:00
len ( path ) < = 2 ? path :
let (
indices = [
0 ,
2021-09-20 22:34:22 +00:00
for ( i = [ 1 : 1 : len ( path ) - ( closed ? 1 : 2 ) ] )
if ( ! is_collinear ( path [ i - 1 ] , path [ i ] , select ( path , i + 1 ) , eps = eps ) ) i ,
if ( ! closed ) len ( path ) - 1
2021-03-06 10:26:39 +00:00
]
) [ for ( i = indices ) path [ i ] ] ;
2019-03-23 04:13:18 +00:00
2021-09-28 23:08:47 +00:00
2021-09-22 18:59:18 +00:00
// Section: Path length calculation
2019-03-23 04:13:18 +00:00
2019-03-27 06:22:38 +00:00
// Function: path_length()
// Usage:
2019-07-01 23:25:00 +00:00
// path_length(path,[closed])
2019-03-27 06:22:38 +00:00
// Description:
// Returns the length of the path.
// Arguments:
// path = The list of points of the path to measure.
2019-08-09 20:07:18 +00:00
// closed = true if the path is closed. Default: false
2019-03-27 06:22:38 +00:00
// Example:
// path = [[0,0], [5,35], [60,-25], [80,0]];
// echo(path_length(path));
2019-07-01 23:25:00 +00:00
function path_length ( path , closed = false ) =
2020-05-30 02:04:34 +00:00
len ( path ) < 2 ? 0 :
sum ( [ for ( i = [ 0 : 1 : len ( path ) - 2 ] ) norm ( path [ i + 1 ] - path [ i ] ) ] ) + ( closed ? norm ( path [ len ( path ) - 1 ] - path [ 0 ] ) : 0 ) ;
2019-03-27 06:22:38 +00:00
2020-06-14 02:35:22 +00:00
// Function: path_segment_lengths()
// Usage:
// path_segment_lengths(path,[closed])
// Description:
// Returns list of the length of each segment in a path
// Arguments:
// path = path to measure
// closed = true if the path is closed. Default: false
function path_segment_lengths ( path , closed = false ) =
[
2021-03-06 10:26:39 +00:00
for ( i = [ 0 : 1 : len ( path ) - 2 ] ) norm ( path [ i + 1 ] - path [ i ] ) ,
2021-03-30 07:46:59 +00:00
if ( closed ) norm ( path [ 0 ] - last ( path ) )
2021-03-06 10:26:39 +00:00
] ;
2020-06-14 02:35:22 +00:00
2021-09-20 22:34:22 +00:00
// Function: path_length_fractions()
// Usage:
// fracs = path_length_fractions(path, [closed]);
// Description:
// Returns the distance fraction of each point in the path along the path, so the first
// point is zero and the final point is 1. If the path is closed the length of the output
// will have one extra point because of the final connecting segment that connects the last
// point of the path to the first point.
2021-10-07 01:16:39 +00:00
// Arguments:
// path = path to operate on
// closed = set to true if path is closed. Default: false
2021-09-20 22:34:22 +00:00
function path_length_fractions ( path , closed = false ) =
assert ( is_path ( path ) )
assert ( is_bool ( closed ) )
let (
lengths = [
0 ,
for ( i = [ 0 : 1 : len ( path ) - ( closed ? 1 : 2 ) ] )
norm ( select ( path , i + 1 ) - path [ i ] )
] ,
partial_len = cumsum ( lengths ) ,
total_len = last ( partial_len )
) partial_len / total_len ;
2020-01-29 03:13:56 +00:00
2021-09-21 23:19:02 +00:00
2021-09-22 18:59:18 +00:00
/// Internal Function: _path_self_intersections()
/// Usage:
/// isects = _path_self_intersections(path, [closed], [eps]);
/// Description:
2021-09-24 21:33:18 +00:00
/// Locates all self intersection points of the given path. Returns a list of intersections, where
2021-09-22 18:59:18 +00:00
/// each intersection is a list like [POINT, SEGNUM1, PROPORTION1, SEGNUM2, PROPORTION2] where
/// POINT is the coordinates of the intersection point, SEGNUMs are the integer indices of the
/// intersecting segments along the path, and the PROPORTIONS are the 0.0 to 1.0 proportions
/// of how far along those segments they intersect at. A proportion of 0.0 indicates the start
/// of the segment, and a proportion of 1.0 indicates the end of the segment.
2021-09-24 21:33:18 +00:00
/// .
/// Note that this function does not return self-intersecting segments, only the points
/// where non-parallel segments intersect.
2021-09-22 18:59:18 +00:00
/// Arguments:
/// path = The path to find self intersections of.
/// closed = If true, treat path like a closed polygon. Default: true
/// eps = The epsilon error value to determine whether two points coincide. Default: `EPSILON` (1e-9)
/// Example(2D):
/// path = [
/// [-100,100], [0,-50], [100,100], [100,-100], [0,50], [-100,-100]
/// ];
/// isects = _path_self_intersections(path, closed=true);
/// // isects == [[[-33.3333, 0], 0, 0.666667, 4, 0.333333], [[33.3333, 0], 1, 0.333333, 3, 0.666667]]
/// stroke(path, closed=true, width=1);
/// for (isect=isects) translate(isect[0]) color("blue") sphere(d=10);
2021-10-07 01:53:46 +00:00
function _path_self_intersections ( path , closed = true , eps = EPSILON ) =
2021-09-21 23:19:02 +00:00
let (
2021-10-04 02:37:57 +00:00
path = closed ? close_path ( path , eps = eps ) : path ,
2021-09-21 23:19:02 +00:00
plen = len ( path )
2021-09-27 22:33:44 +00:00
)
2021-10-04 02:37:57 +00:00
[ for ( i = [ 0 : 1 : plen - 3 ] ) let (
a1 = path [ i ] ,
2021-10-07 01:16:39 +00:00
a2 = path [ i + 1 ] ,
seg_normal = unit ( [ - ( a2 - a1 ) . y , ( a2 - a1 ) . x ] , [ 0 , 0 ] ) ,
vals = path * seg_normal ,
ref = a1 * seg_normal ,
// The value of vals[j]-ref is positive if vertex j is one one side of the
// line [a1,a2] and negative on the other side. Only a segment with opposite
// signs at its two vertices can have an intersection with segment
// [a1,a2]. The variable signals is zero when abs(vals[j]-ref) is less than
// eps and the sign of vals[j]-ref otherwise.
signals = [ for ( j = [ i + 2 : 1 : plen - ( i = = 0 && closed ? 2 : 1 ) ] ) vals [ j ] - ref > eps ? 1
: vals [ j ] - ref < - eps ? - 1
: 0 ]
2021-10-04 02:37:57 +00:00
)
2021-10-07 01:16:39 +00:00
if ( max ( signals ) >= 0 && min ( signals ) < = 0 ) // some remaining edge intersects line [a1,a2]
2021-10-04 02:37:57 +00:00
for ( j = [ i + 2 : 1 : plen - ( i = = 0 && closed ? 3 : 2 ) ] )
2021-10-07 01:16:39 +00:00
if ( signals [ j - i - 2 ] * signals [ j - i - 1 ] < = 0 ) let ( // segm [b1,b2] intersects line [a1,a2]
b1 = path [ j ] ,
b2 = path [ j + 1 ] ,
isect = _general_line_intersection ( [ a1 , a2 ] , [ b1 , b2 ] , eps = eps )
)
if ( isect
2021-10-08 01:31:58 +00:00
// && isect[1]> (i==0 && !closed? -eps: 0) // Apparently too strict
&& isect [ 1 ] >= - eps
2021-10-07 01:16:39 +00:00
&& isect [ 1 ] < = 1 + eps
2021-10-08 03:20:46 +00:00
// && isect[2]> 0
&& isect [ 2 ] >= - eps
2021-10-07 01:16:39 +00:00
&& isect [ 2 ] < = 1 + eps )
[ isect [ 0 ] , i , isect [ 1 ] , j , isect [ 2 ] ]
2021-09-21 23:19:02 +00:00
] ;
2021-09-22 18:59:18 +00:00
// Section: Resampling: changing the number of points in a path
// Input `data` is a list that sums to an integer.
// Returns rounded version of input data so that every
// entry is rounded to an integer and the sum is the same as
// that of the input. Works by rounding an entry in the list
// and passing the rounding error forward to the next entry.
// This will generally distribute the error in a uniform manner.
function _sum_preserving_round ( data , index = 0 ) =
index = = len ( data ) - 1 ? list_set ( data , len ( data ) - 1 , round ( data [ len ( data ) - 1 ] ) ) :
let (
newval = round ( data [ index ] ) ,
error = newval - data [ index ]
) _sum_preserving_round (
list_set ( data , [ index , index + 1 ] , [ newval , data [ index + 1 ] - error ] ) ,
index + 1
) ;
// Function: subdivide_path()
// Usage:
2021-10-04 02:37:57 +00:00
// newpath = subdivide_path(path, [N|refine], method, [closed], [exact]);
2021-09-22 18:59:18 +00:00
// Description:
// Takes a path as input (closed or open) and subdivides the path to produce a more
// finely sampled path. The new points can be distributed proportional to length
// (`method="length"`) or they can be divided up evenly among all the path segments
// (`method="segment"`). If the extra points don't fit evenly on the path then the
// algorithm attempts to distribute them uniformly. The `exact` option requires that
// the final length is exactly as requested. If you set it to `false` then the
// algorithm will favor uniformity and the output path may have a different number of
// points due to rounding error.
// .
// With the `"segment"` method you can also specify a vector of lengths. This vector,
// `N` specfies the desired point count on each segment: with vector input, `subdivide_path`
// attempts to place `N[i]-1` points on segment `i`. The reason for the -1 is to avoid
// double counting the endpoints, which are shared by pairs of segments, so that for
// a closed polygon the total number of points will be sum(N). Note that with an open
// path there is an extra point at the end, so the number of points will be sum(N)+1.
// Arguments:
// path = path to subdivide
// N = scalar total number of points desired or with `method="segment"` can be a vector requesting `N[i]-1` points on segment i.
// refine = number of points to add each segment.
// closed = set to false if the path is open. Default: True
// exact = if true return exactly the requested number of points, possibly sacrificing uniformity. If false, return uniform point sample that may not match the number of points requested. Default: True
// method = One of `"length"` or `"segment"`. If `"length"`, adds vertices evenly along the total path length. If `"segment"`, adds points evenly among the segments. Default: `"length"`
// Example(2D):
// mypath = subdivide_path(square([2,2],center=true), 12);
// move_copies(mypath)circle(r=.1,$fn=32);
// Example(2D):
// mypath = subdivide_path(square([8,2],center=true), 12);
// move_copies(mypath)circle(r=.2,$fn=32);
// Example(2D):
// mypath = subdivide_path(square([8,2],center=true), 12, method="segment");
// move_copies(mypath)circle(r=.2,$fn=32);
// Example(2D):
// mypath = subdivide_path(square([2,2],center=true), 17, closed=false);
// move_copies(mypath)circle(r=.1,$fn=32);
// Example(2D): Specifying different numbers of points on each segment
// mypath = subdivide_path(hexagon(side=2), [2,3,4,5,6,7], method="segment");
// move_copies(mypath)circle(r=.1,$fn=32);
// Example(2D): Requested point total is 14 but 15 points output due to extra end point
// mypath = subdivide_path(pentagon(side=2), [3,4,3,4], method="segment", closed=false);
// move_copies(mypath)circle(r=.1,$fn=32);
// Example(2D): Since 17 is not divisible by 5, a completely uniform distribution is not possible.
// mypath = subdivide_path(pentagon(side=2), 17);
// move_copies(mypath)circle(r=.1,$fn=32);
// Example(2D): With `exact=false` a uniform distribution, but only 15 points
// mypath = subdivide_path(pentagon(side=2), 17, exact=false);
// move_copies(mypath)circle(r=.1,$fn=32);
// Example(2D): With `exact=false` you can also get extra points, here 20 instead of requested 18
// mypath = subdivide_path(pentagon(side=2), 18, exact=false);
// move_copies(mypath)circle(r=.1,$fn=32);
// Example(FlatSpin,VPD=15,VPT=[0,0,1.5]): Three-dimensional paths also work
// mypath = subdivide_path([[0,0,0],[2,0,1],[2,3,2]], 12);
// move_copies(mypath)sphere(r=.1,$fn=32);
function subdivide_path ( path , N , refine , closed = true , exact = true , method = "length" ) =
assert ( is_path ( path ) )
assert ( method = = "length" || method = = "segment" )
assert ( num_defined ( [ N , refine ] ) , "Must give exactly one of N and refine" )
let (
N = ! is_undef ( N ) ? N :
! is_undef ( refine ) ? len ( path ) * refine :
undef
)
assert ( ( is_num ( N ) && N > 0 ) || is_vector ( N ) , "Parameter N to subdivide_path must be postive number or vector" )
let (
count = len ( path ) - ( closed ? 0 : 1 ) ,
add_guess = method = = "segment" ? (
is_list ( N ) ? (
assert ( len ( N ) = = count , "Vector parameter N to subdivide_path has the wrong length" )
add_scalar ( N , - 1 )
) : repeat ( ( N - len ( path ) ) / count , count )
) : // method=="length"
assert ( is_num ( N ) , "Parameter N to subdivide path must be a number when method=\"length\"" )
let (
path_lens = concat (
[ for ( i = [ 0 : 1 : len ( path ) - 2 ] ) norm ( path [ i + 1 ] - path [ i ] ) ] ,
closed ? [ norm ( path [ len ( path ) - 1 ] - path [ 0 ] ) ] : [ ]
) ,
add_density = ( N - len ( path ) ) / sum ( path_lens )
)
path_lens * add_density ,
add = exact ? _sum_preserving_round ( add_guess ) :
[ for ( val = add_guess ) round ( val ) ]
) concat (
[
for ( i = [ 0 : 1 : count ] ) each [
for ( j = [ 0 : 1 : add [ i ] ] )
lerp ( path [ i ] , select ( path , i + 1 ) , j / ( add [ i ] + 1 ) )
]
] ,
closed ? [ ] : [ last ( path ) ]
) ;
// Function: subdivide_long_segments()
// Topics: Paths, Path Subdivision
2021-09-23 05:41:00 +00:00
// See Also: subdivide_path(), subdivide_and_slice(), jittered_poly()
2021-09-22 18:59:18 +00:00
// Usage:
// spath = subdivide_long_segments(path, maxlen, [closed=]);
// Description:
// Evenly subdivides long `path` segments until they are all shorter than `maxlen`.
// Arguments:
// path = The path to subdivide.
// maxlen = The maximum allowed path segment length.
// ---
// closed = If true, treat path like a closed polygon. Default: true
2021-10-07 01:16:39 +00:00
// Example(2D):
2021-09-22 18:59:18 +00:00
// path = pentagon(d=100);
// spath = subdivide_long_segments(path, 10, closed=true);
2021-10-08 01:31:58 +00:00
// stroke(path,width=2,closed=true);
// color("red") move_copies(path) circle(d=9,$fn=12);
// color("blue") move_copies(spath) circle(d=5,$fn=12);
2021-09-22 18:59:18 +00:00
function subdivide_long_segments ( path , maxlen , closed = false ) =
assert ( is_path ( path ) )
assert ( is_finite ( maxlen ) )
assert ( is_bool ( closed ) )
[
for ( p = pair ( path , closed ) ) let (
steps = ceil ( norm ( p [ 1 ] - p [ 0 ] ) / maxlen )
) each lerpn ( p [ 0 ] , p [ 1 ] , steps , false ) ,
if ( ! closed ) last ( path )
] ;
// Function: resample_path()
// Usage:
// newpath = resample_path(path, N|spacing, [closed]);
// Description:
// Compute a uniform resampling of the input path. If you specify `N` then the output path will have N
// points spaced uniformly (by linear interpolation along the input path segments). The only points of the
// input path that are guaranteed to appear in the output path are the starting and ending points.
// If you specify `spacing` then the length you give will be rounded to the nearest spacing that gives
// a uniform sampling of the path and the resulting uniformly sampled path is returned.
// Note that because this function operates on a discrete input path the quality of the output depends on
// the sampling of the input. If you want very accurate output, use a lot of points for the input.
// Arguments:
// path = path to resample
// N = Number of points in output
// spacing = Approximate spacing desired
// closed = set to true if path is closed. Default: false
function resample_path ( path , N , spacing , closed = false ) =
assert ( is_path ( path ) )
assert ( num_defined ( [ N , spacing ] ) = = 1 , "Must define exactly one of N and spacing" )
assert ( is_bool ( closed ) )
let (
length = path_length ( path , closed ) ,
// In the open path case decrease N by 1 so that we don't try to get
// path_cut to return the endpoint (which might fail due to rounding)
// Add last point later
N = is_def ( N ) ? N - ( closed ? 0 : 1 ) : round ( length / spacing ) ,
distlist = lerpn ( 0 , length , N , false ) ,
cuts = _path_cut_points ( path , distlist , closed = closed )
)
[ each subindex ( cuts , 0 ) ,
if ( ! closed ) last ( path ) // Then add last point here
] ;
// Section: Path Geometry
// Function: is_path_simple()
// Usage:
// bool = is_path_simple(path, [closed], [eps]);
// Description:
// Returns true if the path is simple, meaning that it has no self-intersections.
2021-09-29 01:22:05 +00:00
// Repeated points are not considered self-intersections: a path with such points can
// still be simple.
2021-09-22 18:59:18 +00:00
// If closed is set to true then treat the path as a polygon.
// Arguments:
// path = path to check
// closed = set to true to treat path as a polygon. Default: false
// eps = Epsilon error value used for determine if points coincide. Default: `EPSILON` (1e-9)
function is_path_simple ( path , closed = false , eps = EPSILON ) =
2021-09-27 22:33:44 +00:00
[ for ( i = [ 0 : 1 : len ( path ) - ( closed ? 2 : 3 ) ] )
let ( v1 = path [ i + 1 ] - path [ i ] ,
v2 = select ( path , i + 2 ) - path [ i + 1 ] ,
normv1 = norm ( v1 ) ,
normv2 = norm ( v2 )
)
2021-09-29 01:22:05 +00:00
if ( approx ( v1 * v2 / normv1 / normv2 , - 1 ) ) 1 ] = = [ ]
2021-09-27 22:33:44 +00:00
&&
2021-09-22 18:59:18 +00:00
_path_self_intersections ( path , closed = closed , eps = eps ) = = [ ] ;
// Function: path_closest_point()
// Usage:
// path_closest_point(path, pt);
// Description:
// Finds the closest path segment, and point on that segment to the given point.
// Returns `[SEGNUM, POINT]`
// Arguments:
// path = The path to find the closest point on.
// pt = the point to find the closest point to.
// Example(2D):
// path = circle(d=100,$fn=6);
2021-09-22 20:18:54 +00:00
// pt = [20,10];
2021-09-22 18:59:18 +00:00
// closest = path_closest_point(path, pt);
// stroke(path, closed=true);
// color("blue") translate(pt) circle(d=3, $fn=12);
// color("red") translate(closest[1]) circle(d=3, $fn=12);
function path_closest_point ( path , pt ) =
let (
pts = [ for ( seg = idx ( path ) ) line_closest_point ( select ( path , seg , seg + 1 ) , pt , SEGMENT ) ] ,
dists = [ for ( p = pts ) norm ( p - pt ) ] ,
min_seg = min_index ( dists )
) [ min_seg , pts [ min_seg ] ] ;
2021-09-20 22:34:22 +00:00
2020-03-02 00:12:51 +00:00
// Function: path_tangents()
2020-10-04 03:29:35 +00:00
// Usage:
2021-06-27 03:59:33 +00:00
// tangs = path_tangents(path, [closed], [uniform]);
2020-03-02 00:12:51 +00:00
// Description:
// Compute the tangent vector to the input path. The derivative approximation is described in deriv().
2020-06-14 02:35:22 +00:00
// The returns vectors will be normalized to length 1. If any derivatives are zero then
// the function fails with an error. If you set `uniform` to false then the sampling is
// assumed to be non-uniform and the derivative is computed with adjustments to produce corrected
// values.
// Arguments:
// path = path to find the tagent vectors for
// closed = set to true of the path is closed. Default: false
// uniform = set to false to correct for non-uniform sampling. Default: true
2021-10-08 01:31:58 +00:00
// Example(2D): A shape with non-uniform sampling gives distorted derivatives that may be undesirable. Note that derivatives tilt towards the long edges of the rectangle.
2020-06-14 02:35:22 +00:00
// rect = square([10,3]);
// tangents = path_tangents(rect,closed=true);
2021-10-08 01:31:58 +00:00
// stroke(rect,closed=true, width=0.25);
2020-06-14 02:35:22 +00:00
// color("purple")
// for(i=[0:len(tangents)-1])
2021-10-08 01:31:58 +00:00
// stroke([rect[i]-tangents[i], rect[i]+tangents[i]],width=.25, endcap2="arrow2");
// Example(2D): Setting uniform to false corrects the distorted derivatives for this example:
2020-06-14 02:35:22 +00:00
// rect = square([10,3]);
// tangents = path_tangents(rect,closed=true,uniform=false);
2021-10-08 01:31:58 +00:00
// stroke(rect,closed=true, width=0.25);
2020-06-14 02:35:22 +00:00
// color("purple")
// for(i=[0:len(tangents)-1])
2021-10-08 01:31:58 +00:00
// stroke([rect[i]-tangents[i], rect[i]+tangents[i]],width=.25, endcap2="arrow2");
2020-06-14 02:35:22 +00:00
function path_tangents ( path , closed = false , uniform = true ) =
2020-05-30 02:04:34 +00:00
assert ( is_path ( path ) )
2020-06-14 02:35:22 +00:00
! uniform ? [ for ( t = deriv ( path , closed = closed , h = path_segment_lengths ( path , closed ) ) ) unit ( t ) ]
: [ for ( t = deriv ( path , closed = closed ) ) unit ( t ) ] ;
2020-03-02 00:12:51 +00:00
// Function: path_normals()
2020-10-04 03:29:35 +00:00
// Usage:
2021-06-27 03:59:33 +00:00
// norms = path_normals(path, [tangents], [closed]);
2020-03-02 00:12:51 +00:00
// Description:
// Compute the normal vector to the input path. This vector is perpendicular to the
2021-02-24 21:56:21 +00:00
// path tangent and lies in the plane of the curve. For 3d paths we define the plane of the curve
// at path point i to be the plane defined by point i and its two neighbors. At the endpoints of open paths
2021-09-05 02:10:25 +00:00
// we use the three end points. For 3d paths the computed normal is the one lying in this plane that points
// towards the center of curvature at that path point. For 2d paths, which lie in the xy plane, the normal
// is the path pointing to the right of the direction the path is traveling. If points are collinear then
// a 3d path has no center of curvature, and hence the
// normal is not uniquely defined. In this case the function issues an error.
2021-02-24 21:56:21 +00:00
// For 2d paths the plane is always defined so the normal fails to exist only
// when the derivative is zero (in the case of repeated points).
2020-03-02 00:12:51 +00:00
function path_normals ( path , tangents , closed = false ) =
2021-02-24 21:56:21 +00:00
assert ( is_path ( path , [ 2 , 3 ] ) )
2020-05-30 02:04:34 +00:00
assert ( is_bool ( closed ) )
2021-02-24 21:56:21 +00:00
let (
tangents = default ( tangents , path_tangents ( path , closed ) ) ,
dim = len ( path [ 0 ] )
)
assert ( is_path ( tangents ) && len ( tangents [ 0 ] ) = = dim , "Dimensions of path and tangents must match" )
2020-05-30 02:04:34 +00:00
[
2021-02-24 21:56:21 +00:00
for ( i = idx ( path ) )
let (
pts = i = = 0 ? ( closed ? select ( path , - 1 , 1 ) : select ( path , 0 , 2 ) )
: i = = len ( path ) - 1 ? ( closed ? select ( path , i - 1 , i + 1 ) : select ( path , i - 2 , i ) )
: select ( path , i - 1 , i + 1 )
)
dim = = 2 ? [ tangents [ i ] . y , - tangents [ i ] . x ]
2021-09-24 21:33:18 +00:00
: let ( v = cross ( cross ( pts [ 1 ] - pts [ 0 ] , pts [ 2 ] - pts [ 0 ] ) , tangents [ i ] ) )
2021-02-24 21:56:21 +00:00
assert ( norm ( v ) > EPSILON , "3D path contains collinear points" )
2021-04-13 23:27:42 +00:00
unit ( v )
2020-05-30 02:04:34 +00:00
] ;
2020-03-02 00:12:51 +00:00
// Function: path_curvature()
2020-10-04 03:29:35 +00:00
// Usage:
2021-06-27 03:59:33 +00:00
// curvs = path_curvature(path, [closed]);
2020-03-02 00:12:51 +00:00
// Description:
// Numerically estimate the curvature of the path (in any dimension).
function path_curvature ( path , closed = false ) =
2020-05-30 02:04:34 +00:00
let (
d1 = deriv ( path , closed = closed ) ,
d2 = deriv2 ( path , closed = closed )
) [
for ( i = idx ( path ) )
sqrt (
sqr ( norm ( d1 [ i ] ) * norm ( d2 [ i ] ) ) -
sqr ( d1 [ i ] * d2 [ i ] )
) / pow ( norm ( d1 [ i ] ) , 3 )
] ;
2020-03-02 00:12:51 +00:00
// Function: path_torsion()
2020-10-04 03:29:35 +00:00
// Usage:
2021-06-27 03:59:33 +00:00
// tortions = path_torsion(path, [closed]);
2020-03-02 00:12:51 +00:00
// Description:
// Numerically estimate the torsion of a 3d path.
function path_torsion ( path , closed = false ) =
2020-05-30 02:04:34 +00:00
let (
d1 = deriv ( path , closed = closed ) ,
d2 = deriv2 ( path , closed = closed ) ,
d3 = deriv3 ( path , closed = closed )
) [
for ( i = idx ( path ) ) let (
crossterm = cross ( d1 [ i ] , d2 [ i ] )
) crossterm * d3 [ i ] / sqr ( norm ( crossterm ) )
] ;
2020-03-02 00:12:51 +00:00
2019-08-17 04:22:41 +00:00
2021-09-21 23:19:02 +00:00
// Section: Modifying paths
2020-12-30 08:34:25 +00:00
// Function: path_chamfer_and_rounding()
// Usage:
// path2 = path_chamfer_and_rounding(path, [closed], [chamfer], [rounding]);
// Description:
// Rounds or chamfers corners in the given path.
// Arguments:
// path = The path to chamfer and/or round.
// closed = If true, treat path like a closed polygon. Default: true
// chamfer = The length of the chamfer faces at the corners. If given as a list of numbers, gives individual chamfers for each corner, from first to last. Default: 0 (no chamfer)
// rounding = The rounding radius for the corners. If given as a list of numbers, gives individual radii for each corner, from first to last. Default: 0 (no rounding)
// Example(2D): Chamfering a Path
// path = star(5, step=2, d=100);
// path2 = path_chamfer_and_rounding(path, closed=true, chamfer=5);
// stroke(path2, closed=true);
// Example(2D): Per-Corner Chamfering
// path = star(5, step=2, d=100);
// chamfs = [for (i=[0:1:4]) each 3*[i,i]];
// path2 = path_chamfer_and_rounding(path, closed=true, chamfer=chamfs);
// stroke(path2, closed=true);
// Example(2D): Rounding a Path
// path = star(5, step=2, d=100);
// path2 = path_chamfer_and_rounding(path, closed=true, rounding=5);
// stroke(path2, closed=true);
// Example(2D): Per-Corner Chamfering
// path = star(5, step=2, d=100);
2020-12-30 08:38:24 +00:00
// rs = [for (i=[0:1:4]) each 2*[i,i]];
2020-12-30 08:34:25 +00:00
// path2 = path_chamfer_and_rounding(path, closed=true, rounding=rs);
// stroke(path2, closed=true);
// Example(2D): Mixing Chamfers and Roundings
// path = star(5, step=2, d=100);
// chamfs = [for (i=[0:4]) each [5,0]];
// rs = [for (i=[0:4]) each [0,10]];
// path2 = path_chamfer_and_rounding(path, closed=true, chamfer=chamfs, rounding=rs);
// stroke(path2, closed=true);
2021-07-11 04:39:56 +00:00
function path_chamfer_and_rounding ( path , closed = true , chamfer , rounding ) =
2021-04-11 11:34:59 +00:00
let (
path = deduplicate ( path , closed = true ) ,
lp = len ( path ) ,
chamfer = is_undef ( chamfer ) ? repeat ( 0 , lp ) :
is_vector ( chamfer ) ? list_pad ( chamfer , lp , 0 ) :
is_num ( chamfer ) ? repeat ( chamfer , lp ) :
assert ( false , "Bad chamfer value." ) ,
rounding = is_undef ( rounding ) ? repeat ( 0 , lp ) :
is_vector ( rounding ) ? list_pad ( rounding , lp , 0 ) :
is_num ( rounding ) ? repeat ( rounding , lp ) :
assert ( false , "Bad rounding value." ) ,
corner_paths = [
for ( i = ( closed ? [ 0 : 1 : lp - 1 ] : [ 1 : 1 : lp - 2 ] ) ) let (
p1 = select ( path , i - 1 ) ,
p2 = select ( path , i ) ,
p3 = select ( path , i + 1 )
)
chamfer [ i ] > 0 ? _corner_chamfer_path ( p1 , p2 , p3 , side = chamfer [ i ] ) :
rounding [ i ] > 0 ? _corner_roundover_path ( p1 , p2 , p3 , r = rounding [ i ] ) :
[ p2 ]
] ,
out = [
if ( ! closed ) path [ 0 ] ,
for ( i = ( closed ? [ 0 : 1 : lp - 1 ] : [ 1 : 1 : lp - 2 ] ) ) let (
p1 = select ( path , i - 1 ) ,
p2 = select ( path , i ) ,
crn1 = select ( corner_paths , i - 1 ) ,
crn2 = corner_paths [ i ] ,
l1 = norm ( last ( crn1 ) - p1 ) ,
l2 = norm ( crn2 [ 0 ] - p2 ) ,
needed = l1 + l2 ,
seglen = norm ( p2 - p1 ) ,
check = assert ( seglen >= needed , str ( "Path segment " , i , " is too short to fulfill rounding/chamfering for the adjacent corners." ) )
) each crn2 ,
if ( ! closed ) last ( path )
]
) deduplicate ( out ) ;
2020-12-30 08:34:25 +00:00
function _corner_chamfer_path ( p1 , p2 , p3 , dist1 , dist2 , side , angle ) =
2021-04-11 11:34:59 +00:00
let (
v1 = unit ( p1 - p2 ) ,
v2 = unit ( p3 - p2 ) ,
n = vector_axis ( v1 , v2 ) ,
ang = vector_angle ( v1 , v2 ) ,
path = ( is_num ( dist1 ) && is_undef ( dist2 ) && is_undef ( side ) ) ? (
// dist1 & optional angle
assert ( dist1 > 0 )
let ( angle = default ( angle , ( 180 - ang ) / 2 ) )
assert ( is_num ( angle ) )
assert ( angle > 0 && angle < 180 )
let (
pta = p2 + dist1 * v1 ,
a3 = 180 - angle - ang
) assert ( a3 > 0 , "Angle too extreme." )
let (
side = sin ( angle ) * dist1 / sin ( a3 ) ,
ptb = p2 + side * v2
) [ pta , ptb ]
) : ( is_undef ( dist1 ) && is_num ( dist2 ) && is_undef ( side ) ) ? (
// dist2 & optional angle
assert ( dist2 > 0 )
let ( angle = default ( angle , ( 180 - ang ) / 2 ) )
assert ( is_num ( angle ) )
assert ( angle > 0 && angle < 180 )
let (
ptb = p2 + dist2 * v2 ,
a3 = 180 - angle - ang
) assert ( a3 > 0 , "Angle too extreme." )
let (
side = sin ( angle ) * dist2 / sin ( a3 ) ,
pta = p2 + side * v1
) [ pta , ptb ]
) : ( is_undef ( dist1 ) && is_undef ( dist2 ) && is_num ( side ) ) ? (
// side & optional angle
assert ( side > 0 )
let ( angle = default ( angle , ( 180 - ang ) / 2 ) )
assert ( is_num ( angle ) )
assert ( angle > 0 && angle < 180 )
let (
a3 = 180 - angle - ang
) assert ( a3 > 0 , "Angle too extreme." )
let (
dist1 = sin ( a3 ) * side / sin ( ang ) ,
dist2 = sin ( angle ) * side / sin ( ang ) ,
pta = p2 + dist1 * v1 ,
ptb = p2 + dist2 * v2
) [ pta , ptb ]
) : ( is_num ( dist1 ) && is_num ( dist2 ) && is_undef ( side ) && is_undef ( side ) ) ? (
// dist1 & dist2
assert ( dist1 > 0 )
assert ( dist2 > 0 )
let (
pta = p2 + dist1 * v1 ,
ptb = p2 + dist2 * v2
) [ pta , ptb ]
) : (
assert ( false , "Bad arguments." )
)
) path ;
2020-12-30 08:34:25 +00:00
function _corner_roundover_path ( p1 , p2 , p3 , r , d ) =
2021-04-11 11:34:59 +00:00
let (
r = get_radius ( r = r , d = d , dflt = undef ) ,
res = circle_2tangents ( p1 , p2 , p3 , r = r , tangents = true ) ,
cp = res [ 0 ] ,
n = res [ 1 ] ,
tp1 = res [ 2 ] ,
ang = res [ 4 ] + res [ 5 ] ,
steps = floor ( segs ( r ) * ang / 360 + 0.5 ) ,
step = ang / steps ,
path = [ for ( i = [ 0 : 1 : steps ] ) move ( cp , p = rot ( a = - i * step , v = n , p = tp1 - cp ) ) ]
) path ;
2020-12-30 08:34:25 +00:00
2020-01-30 22:00:10 +00:00
2021-09-21 23:19:02 +00:00
// Section: Breaking paths up into subpaths
2020-01-30 22:00:10 +00:00
2021-09-18 23:11:08 +00:00
/// Internal Function: _path_cut_points()
///
/// Usage:
/// cuts = _path_cut_points(path, dists, [closed=], [direction=]);
///
/// Description:
/// Cuts a path at a list of distances from the first point in the path. Returns a list of the cut
/// points and indices of the next point in the path after that point. So for example, a return
/// value entry of [[2,3], 5] means that the cut point was [2,3] and the next point on the path after
2021-09-20 03:08:38 +00:00
/// this point is path[5]. If the path is too short then _path_cut_points returns undef. If you set
/// `direction` to true then `_path_cut_points` will also return the tangent vector to the path and a normal
2021-09-18 23:11:08 +00:00
/// vector to the path. It tries to find a normal vector that is coplanar to the path near the cut
/// point. If this fails it will return a normal vector parallel to the xy plane. The output with
/// direction vectors will be `[point, next_index, tangent, normal]`.
/// .
/// If you give the very last point of the path as a cut point then the returned index will be
/// one larger than the last index (so it will not be a valid index). If you use the closed
/// option then the returned index will be equal to the path length for cuts along the closing
/// path segment, and if you give a point equal to the path length you will get an
/// index of len(path)+1 for the index.
///
/// Arguments:
/// path = path to cut
/// dists = distances where the path should be cut (a list) or a scalar single distance
/// ---
/// closed = set to true if the curve is closed. Default: false
/// direction = set to true to return direction vectors. Default: false
///
/// Example(NORENDER):
/// square=[[0,0],[1,0],[1,1],[0,1]];
/// _path_cut_points(square, [.5,1.5,2.5]); // Returns [[[0.5, 0], 1], [[1, 0.5], 2], [[0.5, 1], 3]]
/// _path_cut_points(square, [0,1,2,3]); // Returns [[[0, 0], 1], [[1, 0], 2], [[1, 1], 3], [[0, 1], 4]]
/// _path_cut_points(square, [0,0.8,1.6,2.4,3.2], closed=true); // Returns [[[0, 0], 1], [[0.8, 0], 1], [[1, 0.6], 2], [[0.6, 1], 3], [[0, 0.8], 4]]
/// _path_cut_points(square, [0,0.8,1.6,2.4,3.2]); // Returns [[[0, 0], 1], [[0.8, 0], 1], [[1, 0.6], 2], [[0.6, 1], 3], undef]
function _path_cut_points ( path , dists , closed = false , direction = false ) =
2021-09-05 02:10:25 +00:00
let ( long_enough = len ( path ) >= ( closed ? 3 : 2 ) )
assert ( long_enough , len ( path ) < 2 ? "Two points needed to define a path" : "Closed path must include three points" )
2021-09-18 23:11:08 +00:00
is_num ( dists ) ? _path_cut_points ( path , [ dists ] , closed , direction ) [ 0 ] :
2021-09-05 02:10:25 +00:00
assert ( is_vector ( dists ) )
assert ( list_increasing ( dists ) , "Cut distances must be an increasing list" )
2021-09-18 23:11:08 +00:00
let ( cuts = _path_cut_points_recurse ( path , dists , closed ) )
2021-09-05 02:10:25 +00:00
! direction
? cuts
: let (
dir = _path_cuts_dir ( path , cuts , closed ) ,
normals = _path_cuts_normals ( path , cuts , dir , closed )
)
hstack ( cuts , array_group ( dir , 1 ) , array_group ( normals , 1 ) ) ;
2017-08-30 00:00:16 +00:00
2021-09-05 02:10:25 +00:00
// Main recursive path cut function
2021-09-18 23:11:08 +00:00
function _path_cut_points_recurse ( path , dists , closed = false , pind = 0 , dtotal = 0 , dind = 0 , result = [ ] ) =
2021-09-05 02:10:25 +00:00
dind = = len ( dists ) ? result :
let (
lastpt = len ( result ) = = 0 ? [ ] : last ( result ) [ 0 ] , // location of last cut point
dpartial = len ( result ) = = 0 ? 0 : norm ( lastpt - select ( path , pind ) ) , // remaining length in segment
nextpoint = dists [ dind ] < dpartial + dtotal // Do we have enough length left on the current segment?
? [ lerp ( lastpt , select ( path , pind ) , ( dists [ dind ] - dtotal ) / dpartial ) , pind ]
: _path_cut_single ( path , dists [ dind ] - dtotal - dpartial , closed , pind )
)
2021-09-18 23:11:08 +00:00
_path_cut_points_recurse ( path , dists , closed , nextpoint [ 1 ] , dists [ dind ] , dind + 1 , concat ( result , [ nextpoint ] ) ) ;
2017-08-30 00:00:16 +00:00
2021-03-18 01:27:10 +00:00
2021-09-05 02:10:25 +00:00
// Search for a single cut point in the path
function _path_cut_single ( path , dist , closed = false , ind = 0 , eps = 1e-7 ) =
// If we get to the very end of the path (ind is last point or wraparound for closed case) then
// check if we are within epsilon of the final path point. If not we're out of path, so we fail
ind = = len ( path ) - ( closed ? 0 : 1 ) ?
assert ( dist < eps , "Path is too short for specified cut distance" )
[ select ( path , ind ) , ind + 1 ]
: let ( d = norm ( path [ ind ] - select ( path , ind + 1 ) ) ) d > dist ?
[ lerp ( path [ ind ] , select ( path , ind + 1 ) , dist / d ) , ind + 1 ] :
_path_cut_single ( path , dist - d , closed , ind + 1 , eps ) ;
2021-03-18 01:27:10 +00:00
2021-09-05 02:10:25 +00:00
// Find normal directions to the path, coplanar to local part of the path
// Or return a vector parallel to the x-y plane if the above fails
function _path_cuts_normals ( path , cuts , dirs , closed = false ) =
[ for ( i = [ 0 : len ( cuts ) - 1 ] )
len ( path [ 0 ] ) = = 2 ? [ - dirs [ i ] . y , dirs [ i ] . x ]
:
let (
plane = len ( path ) < 3 ? undef :
let ( start = max ( min ( cuts [ i ] [ 1 ] , len ( path ) - 1 ) , 2 ) ) _path_plane ( path , start , start - 2 )
)
plane = = undef ?
( dirs [ i ] . x = = 0 && dirs [ i ] . y = = 0 ? [ 1 , 0 , 0 ] // If it's z direction return x vector
: unit ( [ - dirs [ i ] . y , dirs [ i ] . x , 0 ] ) ) // otherwise perpendicular to projection
: unit ( cross ( dirs [ i ] , cross ( plane [ 0 ] , plane [ 1 ] ) ) )
] ;
2021-03-18 01:27:10 +00:00
2021-09-05 02:10:25 +00:00
// Scan from the specified point (ind) to find a noncoplanar triple to use
// to define the plane of the path.
function _path_plane ( path , ind , i , closed ) =
i < ( closed ? - 1 : 0 ) ? undef :
2021-09-15 23:01:34 +00:00
! is_collinear ( path [ ind ] , path [ ind - 1 ] , select ( path , i ) ) ?
2021-09-05 02:10:25 +00:00
[ select ( path , i ) - path [ ind - 1 ] , path [ ind ] - path [ ind - 1 ] ] :
_path_plane ( path , ind , i - 1 ) ;
2021-03-18 01:27:10 +00:00
2021-09-05 02:10:25 +00:00
// Find the direction of the path at the cut points
function _path_cuts_dir ( path , cuts , closed = false , eps = 1e-2 ) =
[ for ( ind = [ 0 : len ( cuts ) - 1 ] )
let (
zeros = path [ 0 ] * 0 ,
nextind = cuts [ ind ] [ 1 ] ,
nextpath = unit ( select ( path , nextind + 1 ) - select ( path , nextind ) , zeros ) ,
thispath = unit ( select ( path , nextind ) - select ( path , nextind - 1 ) , zeros ) ,
lastpath = unit ( select ( path , nextind - 1 ) - select ( path , nextind - 2 ) , zeros ) ,
nextdir =
nextind = = len ( path ) && ! closed ? lastpath :
( nextind < = len ( path ) - 2 || closed ) && approx ( cuts [ ind ] [ 0 ] , path [ nextind ] , eps )
? unit ( nextpath + thispath )
: ( nextind > 1 || closed ) && approx ( cuts [ ind ] [ 0 ] , select ( path , nextind - 1 ) , eps )
? unit ( thispath + lastpath )
: thispath
) nextdir
] ;
2019-03-23 04:13:18 +00:00
2021-09-05 02:10:25 +00:00
// Function: path_cut()
// Topics: Paths
2021-09-20 22:34:22 +00:00
// See Also: split_path_at_self_crossings()
2021-09-05 02:10:25 +00:00
// Usage:
// path_list = path_cut(path, cutdist, [closed=]);
2019-03-23 04:13:18 +00:00
// Description:
2021-09-05 02:10:25 +00:00
// Given a list of distances in `cutdist`, cut the path into
// subpaths at those lengths, returning a list of paths.
// If the input path is closed then the final path will include the
// original starting point. The list of cut distances must be
2021-09-18 23:11:08 +00:00
// in ascending order and should not include the endpoints: 0
// or len(path). If you repeat a distance you will get an
// empty list in that position in the output. If you give an
// empty cutdist array you will get the input path as output
// (without the final vertex doubled in the case of a closed path).
2019-03-23 04:13:18 +00:00
// Arguments:
2021-09-05 02:10:25 +00:00
// path = The original path to split.
// cutdist = Distance or list of distances where path is cut
// closed = If true, treat the path as a closed polygon.
2021-10-08 01:31:58 +00:00
// Example(2D,NoAxes):
2021-09-05 02:10:25 +00:00
// path = circle(d=100);
// segs = path_cut(path, [50, 200], closed=true);
2021-10-08 01:31:58 +00:00
// rainbow(segs) stroke($item, endcaps="butt", width=3);
2021-09-05 02:10:25 +00:00
function path_cut ( path , cutdist , closed ) =
is_num ( cutdist ) ? path_cut ( path , [ cutdist ] , closed ) :
assert ( is_vector ( cutdist ) )
2021-09-18 23:11:08 +00:00
assert ( last ( cutdist ) < path_length ( path , closed = closed ) , "Cut distances must be smaller than the path length" )
2021-09-05 02:10:25 +00:00
assert ( cutdist [ 0 ] > 0 , "Cut distances must be strictly positive" )
let (
2021-09-18 23:11:08 +00:00
cutlist = _path_cut_points ( path , cutdist , closed = closed )
)
_path_cut_getpaths ( path , cutlist , closed ) ;
function _path_cut_getpaths ( path , cutlist , closed ) =
let (
2021-09-05 02:10:25 +00:00
cuts = len ( cutlist )
)
[
[ each list_head ( path , cutlist [ 0 ] [ 1 ] - 1 ) ,
if ( ! approx ( cutlist [ 0 ] [ 0 ] , path [ cutlist [ 0 ] [ 1 ] - 1 ] ) ) cutlist [ 0 ] [ 0 ]
] ,
for ( i = [ 0 : 1 : cuts - 2 ] )
2021-09-19 03:54:27 +00:00
cutlist [ i ] [ 0 ] = = cutlist [ i + 1 ] [ 0 ] && cutlist [ i ] [ 1 ] = = cutlist [ i + 1 ] [ 1 ] ? [ ]
2021-09-05 02:10:25 +00:00
:
[ if ( ! approx ( cutlist [ i ] [ 0 ] , select ( path , cutlist [ i ] [ 1 ] ) ) ) cutlist [ i ] [ 0 ] ,
each slice ( path , cutlist [ i ] [ 1 ] , cutlist [ i + 1 ] [ 1 ] - 1 ) ,
if ( ! approx ( cutlist [ i + 1 ] [ 0 ] , select ( path , cutlist [ i + 1 ] [ 1 ] - 1 ) ) ) cutlist [ i + 1 ] [ 0 ] ,
] ,
[
if ( ! approx ( cutlist [ cuts - 1 ] [ 0 ] , select ( path , cutlist [ cuts - 1 ] [ 1 ] ) ) ) cutlist [ cuts - 1 ] [ 0 ] ,
each select ( path , cutlist [ cuts - 1 ] [ 1 ] , closed ? 0 : - 1 )
]
] ;
2019-02-03 08:12:37 +00:00
2021-09-18 23:11:08 +00:00
// internal function
// converts pathcut output form to a [segment, u]
// form list that works withi path_select
function _cut_to_seg_u_form ( pathcut , path , closed ) =
let ( lastind = len ( path ) - ( closed ? 0 : 1 ) )
[ for ( entry = pathcut )
entry [ 1 ] > lastind ? [ lastind , 0 ] :
let (
a = path [ entry [ 1 ] - 1 ] ,
b = path [ entry [ 1 ] ] ,
c = entry [ 0 ] ,
i = max_index ( v_abs ( b - a ) ) ,
factor = ( c [ i ] - a [ i ] ) / ( b [ i ] - a [ i ] )
)
[ entry [ 1 ] - 1 , factor ]
] ;
2019-02-03 08:12:37 +00:00
2021-09-21 23:19:02 +00:00
// Function: split_path_at_self_crossings()
2021-09-05 02:10:25 +00:00
// Usage:
2021-09-21 23:19:02 +00:00
// paths = split_path_at_self_crossings(path, [closed], [eps]);
2019-03-23 04:13:18 +00:00
// Description:
2021-09-21 23:19:02 +00:00
// Splits a path into sub-paths wherever the original path crosses itself.
// Splits may occur mid-segment, so new vertices will be created at the intersection points.
2021-09-05 02:10:25 +00:00
// Arguments:
2021-09-21 23:19:02 +00:00
// path = The path to split up.
// closed = If true, treat path as a closed polygon. Default: true
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
2021-10-08 01:31:58 +00:00
// Example(2D,NoAxes):
2021-09-21 23:19:02 +00:00
// path = [ [-100,100], [0,-50], [100,100], [100,-100], [0,50], [-100,-100] ];
// paths = split_path_at_self_crossings(path);
2021-10-08 01:31:58 +00:00
// rainbow(paths) stroke($item, closed=false, width=3);
2021-09-21 23:19:02 +00:00
function split_path_at_self_crossings ( path , closed = true , eps = EPSILON ) =
2021-09-05 02:10:25 +00:00
let (
2021-09-21 23:19:02 +00:00
path = cleanup_path ( path , eps = eps ) ,
isects = deduplicate (
eps = eps ,
concat (
[ [ 0 , 0 ] ] ,
sort ( [
for (
2021-09-22 18:59:18 +00:00
a = _path_self_intersections ( path , closed = closed , eps = eps ) ,
2021-09-21 23:19:02 +00:00
ss = [ [ a [ 1 ] , a [ 2 ] ] , [ a [ 3 ] , a [ 4 ] ] ]
) if ( ss [ 0 ] ! = undef ) ss
] ) ,
[ [ len ( path ) - ( closed ? 1 : 2 ) , 1 ] ]
)
)
) [
for ( p = pair ( isects ) )
2021-09-05 02:10:25 +00:00
let (
2021-09-21 23:19:02 +00:00
s1 = p [ 0 ] [ 0 ] ,
u1 = p [ 0 ] [ 1 ] ,
s2 = p [ 1 ] [ 0 ] ,
u2 = p [ 1 ] [ 1 ] ,
section = _path_select ( path , s1 , u1 , s2 , u2 , closed = closed ) ,
outpath = deduplicate ( eps = eps , section )
2021-09-05 02:10:25 +00:00
)
2021-09-24 21:33:18 +00:00
if ( len ( outpath ) > 1 ) outpath
2021-09-21 23:19:02 +00:00
] ;
2021-09-05 02:10:25 +00:00
2021-09-21 23:19:02 +00:00
function _tag_self_crossing_subpaths ( path , nonzero , closed = true , eps = EPSILON ) =
let (
subpaths = split_path_at_self_crossings (
path , closed = true , eps = eps
)
) [
for ( subpath = subpaths ) let (
seg = select ( subpath , 0 , 1 ) ,
mp = mean ( seg ) ,
n = line_normal ( seg ) / 2048 ,
p1 = mp + n ,
p2 = mp - n ,
p1in = point_in_polygon ( p1 , path , nonzero = nonzero ) >= 0 ,
p2in = point_in_polygon ( p2 , path , nonzero = nonzero ) >= 0 ,
tag = ( p1in && p2in ) ? "I" : "O"
) [ tag , subpath ]
] ;
2021-09-05 02:10:25 +00:00
2021-09-21 23:19:02 +00:00
// Function: polygon_parts()
2021-09-05 02:10:25 +00:00
// Usage:
2021-09-21 23:19:02 +00:00
// splitpaths = polygon_parts(path, [nonzero], [eps]);
2021-09-05 02:10:25 +00:00
// Description:
2021-09-21 23:19:02 +00:00
// Given a possibly self-intersecting polygon, constructs a representation of the original polygon as a list of
// non-intersecting simple polygons. If nonzero is set to true then it uses the nonzero method for defining polygon membership, which
// means it will produce the outer perimeter.
2021-09-05 02:10:25 +00:00
// Arguments:
2021-09-21 23:19:02 +00:00
// path = The path to split up.
// nonzero = If true use the nonzero method for checking if a point is in a polygon. Otherwise use the even-odd method. Default: false
// eps = The epsilon error value to determine whether two points coincide. Default: `EPSILON` (1e-9)
2021-10-08 01:31:58 +00:00
// Example(2D,NoAxes): This cross-crossing polygon breaks up into its 3 components (regardless of the value of nonzero).
2021-09-21 23:19:02 +00:00
// path = [
// [-100,100], [0,-50], [100,100],
// [100,-100], [0,50], [-100,-100]
// ];
// splitpaths = polygon_parts(path);
// rainbow(splitpaths) stroke($item, closed=true, width=3);
2021-10-08 01:31:58 +00:00
// Example(2D,NoAxes): With nonzero=false you get even-odd mode which matches OpenSCAD, so the pentagram breaks apart into its five points.
2021-09-21 23:19:02 +00:00
// pentagram = turtle(["move",100,"left",144], repeat=4);
// left(100)polygon(pentagram);
// rainbow(polygon_parts(pentagram,nonzero=false))
2021-10-08 01:31:58 +00:00
// stroke($item,closed=true,width=2.5);
// Example(2D,NoAxes): With nonzero=true you get only the outer perimeter. You can use this to create the polygon using the nonzero method, which is not supported by OpenSCAD.
2021-09-21 23:19:02 +00:00
// pentagram = turtle(["move",100,"left",144], repeat=4);
// outside = polygon_parts(pentagram,nonzero=true);
// left(100)region(outside);
// rainbow(outside)
2021-10-08 01:31:58 +00:00
// stroke($item,closed=true,width=2.5);
// Example(2D,NoAxes):
2021-09-24 21:33:18 +00:00
// N=12;
// ang=360/N;
// sr=10;
// path = turtle(["angle", 90+ang/2,
// "move", sr, "left",
// "move", 2*sr*sin(ang/2), "left",
// "repeat", 4,
// ["move", 2*sr, "left",
// "move", 2*sr*sin(ang/2), "left"],
// "move", sr]);
// stroke(path, width=.3);
// right(20)rainbow(polygon_parts(path)) polygon($item);
2021-10-08 01:31:58 +00:00
// Example(2D,NoAxes): overlapping path segments disappear
2021-09-24 21:33:18 +00:00
// path = [[0,0], [10,0], [10,10], [0,10],[0,20], [20,10],[10,10], [0,10],[0,0]];
// stroke(path,width=0.3);
// right(22)stroke(polygon_parts(path)[0], width=0.3, closed=true);
2021-10-08 01:31:58 +00:00
// Example(2D,NoAxes): Path segments disappear outside as well
2021-09-24 21:33:18 +00:00
// path = turtle(["repeat", 3, ["move", 17, "left", "move", 10, "left", "move", 7, "left", "move", 10, "left"]]);
2021-10-08 01:31:58 +00:00
// back(2)stroke(path,width=.5);
// fwd(12)rainbow(polygon_parts(path)) stroke($item, closed=true, width=0.5);
// Example(2D,NoAxes): This shape has six components
2021-09-24 21:33:18 +00:00
// path = turtle(["repeat", 3, ["move", 15, "left", "move", 7, "left", "move", 10, "left", "move", 17, "left"]]);
// polygon(path);
// right(22)rainbow(polygon_parts(path)) polygon($item);
2021-10-08 01:31:58 +00:00
// Example(2D,NoAxes): When the loops of the shape overlap then nonzero gives a different result than the even-odd method.
2021-09-24 21:33:18 +00:00
// path = turtle(["repeat", 3, ["move", 15, "left", "move", 7, "left", "move", 10, "left", "move", 10, "left"]]);
// polygon(path);
// right(27)rainbow(polygon_parts(path)) polygon($item);
// move([16,-14])rainbow(polygon_parts(path,nonzero=true)) polygon($item);
2021-09-27 22:33:44 +00:00
function polygon_parts ( path , nonzero = false , eps = EPSILON ) =
2021-09-21 23:19:02 +00:00
let (
path = cleanup_path ( path , eps = eps ) ,
2021-09-27 22:33:44 +00:00
tagged = _tag_self_crossing_subpaths ( path , nonzero = nonzero , closed = true , eps = eps ) ,
2021-09-21 23:19:02 +00:00
kept = [ for ( sub = tagged ) if ( sub [ 0 ] = = "O" ) sub [ 1 ] ] ,
outregion = _assemble_path_fragments ( kept , eps = eps )
) outregion ;
function _extreme_angle_fragment ( seg , fragments , rightmost = true , eps = EPSILON ) =
! fragments ? [ undef , [ ] ] :
let (
delta = seg [ 1 ] - seg [ 0 ] ,
segang = atan2 ( delta . y , delta . x ) ,
frags = [
for ( i = idx ( fragments ) ) let (
fragment = fragments [ i ] ,
fwdmatch = approx ( seg [ 1 ] , fragment [ 0 ] , eps = eps ) ,
bakmatch = approx ( seg [ 1 ] , last ( fragment ) , eps = eps )
) [
fwdmatch ,
bakmatch ,
bakmatch ? reverse ( fragment ) : fragment
]
] ,
angs = [
for ( frag = frags )
( frag [ 0 ] || frag [ 1 ] ) ? let (
delta2 = frag [ 2 ] [ 1 ] - frag [ 2 ] [ 0 ] ,
segang2 = atan2 ( delta2 . y , delta2 . x )
) modang ( segang2 - segang ) : (
rightmost ? 999 : - 999
)
] ,
fi = rightmost ? min_index ( angs ) : max_index ( angs )
) abs ( angs [ fi ] ) > 360 ? [ undef , fragments ] : let (
remainder = [ for ( i = idx ( fragments ) ) if ( i ! = fi ) fragments [ i ] ] ,
frag = frags [ fi ] ,
foundfrag = frag [ 2 ]
) [ foundfrag , remainder ] ;
/// Internal Function: _assemble_a_path_from_fragments()
/// Usage:
/// _assemble_a_path_from_fragments(subpaths);
/// Description:
/// Given a list of paths, assembles them together into one complete closed polygon path, and
/// remainder fragments. Returns [PATH, FRAGMENTS] where FRAGMENTS is the list of remaining
/// unused path fragments.
/// Arguments:
/// fragments = List of paths to be assembled into complete polygons.
/// rightmost = If true, assemble paths using rightmost turns. Leftmost if false.
/// startfrag = The fragment to start with. Default: 0
/// eps = The epsilon error value to determine whether two points coincide. Default: `EPSILON` (1e-9)
function _assemble_a_path_from_fragments ( fragments , rightmost = true , startfrag = 0 , eps = EPSILON ) =
len ( fragments ) = = 0 ? _finished :
let (
path = fragments [ startfrag ] ,
newfrags = [ for ( i = idx ( fragments ) ) if ( i ! = startfrag ) fragments [ i ] ]
) is_closed_path ( path , eps = eps ) ? (
// starting fragment is already closed
[ path , newfrags ]
) : let (
// Find rightmost/leftmost continuation fragment
seg = select ( path , - 2 , - 1 ) ,
extrema = _extreme_angle_fragment ( seg = seg , fragments = newfrags , rightmost = rightmost , eps = eps ) ,
foundfrag = extrema [ 0 ] ,
remainder = extrema [ 1 ]
) is_undef ( foundfrag ) ? (
// No remaining fragments connect! INCOMPLETE PATH!
// Treat it as complete.
[ path , remainder ]
) : is_closed_path ( foundfrag , eps = eps ) ? (
// Found fragment is already closed
[ foundfrag , concat ( [ path ] , remainder ) ]
) : let (
fragend = last ( foundfrag ) ,
hits = [ for ( i = idx ( path , e = - 2 ) ) if ( approx ( path [ i ] , fragend , eps = eps ) ) i ]
) hits ? (
let (
// Found fragment intersects with initial path
hitidx = last ( hits ) ,
newpath = list_head ( path , hitidx ) ,
newfrags = concat ( len ( newpath ) > 1 ? [ newpath ] : [ ] , remainder ) ,
outpath = concat ( slice ( path , hitidx , - 2 ) , foundfrag )
)
[ outpath , newfrags ]
) : let (
// Path still incomplete. Continue building it.
newpath = concat ( path , list_tail ( foundfrag ) ) ,
newfrags = concat ( [ newpath ] , remainder )
)
_assemble_a_path_from_fragments (
fragments = newfrags ,
rightmost = rightmost ,
eps = eps
) ;
/// Internal Function: _assemble_path_fragments()
/// Usage:
/// _assemble_path_fragments(subpaths);
/// Description:
/// Given a list of paths, assembles them together into complete closed polygon paths if it can.
2021-09-24 21:33:18 +00:00
/// Polygons with area < eps will be discarded and not returned.
2021-09-21 23:19:02 +00:00
/// Arguments:
/// fragments = List of paths to be assembled into complete polygons.
/// eps = The epsilon error value to determine whether two points coincide. Default: `EPSILON` (1e-9)
function _assemble_path_fragments ( fragments , eps = EPSILON , _finished = [ ] ) =
len ( fragments ) = = 0 ? _finished :
let (
minxidx = min_index ( [
for ( frag = fragments ) min ( subindex ( frag , 0 ) )
] ) ,
result_l = _assemble_a_path_from_fragments (
fragments = fragments ,
startfrag = minxidx ,
rightmost = false ,
eps = eps
) ,
result_r = _assemble_a_path_from_fragments (
fragments = fragments ,
startfrag = minxidx ,
rightmost = true ,
eps = eps
) ,
l_area = abs ( polygon_area ( result_l [ 0 ] ) ) ,
r_area = abs ( polygon_area ( result_r [ 0 ] ) ) ,
result = l_area < r_area ? result_l : result_r ,
newpath = cleanup_path ( result [ 0 ] ) ,
remainder = result [ 1 ] ,
2021-09-24 21:33:18 +00:00
finished = min ( l_area , r_area ) < eps ? _finished : concat ( _finished , [ newpath ] )
2021-09-21 23:19:02 +00:00
) _assemble_path_fragments (
fragments = remainder ,
eps = eps ,
_finished = finished
) ;
2020-05-30 02:04:34 +00:00
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap