mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-01 09:49:45 +00:00
commit
cc08eb3323
2 changed files with 9 additions and 9 deletions
|
@ -1469,7 +1469,7 @@ function bezier_patch_normals(patch, u, v) =
|
||||||
// ---
|
// ---
|
||||||
// splinesteps = Number of segments on the border edges of the bezier surface. You can specify [USTEPS,VSTEPS]. Default: 16
|
// splinesteps = Number of segments on the border edges of the bezier surface. You can specify [USTEPS,VSTEPS]. Default: 16
|
||||||
// style = {{vnf_vertex_array()}} style to use. Default: "default"
|
// style = {{vnf_vertex_array()}} style to use. Default: "default"
|
||||||
// Example:
|
// Example(3D):
|
||||||
// patch = [
|
// patch = [
|
||||||
// // u=0,v=0 u=1,v=0
|
// // u=0,v=0 u=1,v=0
|
||||||
// [[-50,-50, 0], [-16,-50, 20], [ 16,-50, -20], [50,-50, 0]],
|
// [[-50,-50, 0], [-16,-50, 20], [ 16,-50, -20], [50,-50, 0]],
|
||||||
|
|
16
vnf.scad
16
vnf.scad
|
@ -1655,7 +1655,7 @@ function _sort_pairs0(arr) =
|
||||||
// ---
|
// ---
|
||||||
// merge = set to false to suppress the automatic invocation of {{vnf_merge_points()}}. Default: true
|
// merge = set to false to suppress the automatic invocation of {{vnf_merge_points()}}. Default: true
|
||||||
// idx = if true, return indices into VNF vertices instead of actual 3D points. Must set `merge=false` to enable this. Default: false
|
// idx = if true, return indices into VNF vertices instead of actual 3D points. Must set `merge=false` to enable this. Default: false
|
||||||
// Example(NoAxes,VPT=[7.06325,-20.8414,20.1803],VPD=292.705,VPR=[55,0,25.7]): In this example we know that the bezier patch VNF has no duplicate vertices, so we do not need to run {{vnf_merge_points()}}.
|
// Example(3D,NoAxes,VPT=[7.06325,-20.8414,20.1803],VPD=292.705,VPR=[55,0,25.7]): In this example we know that the bezier patch VNF has no duplicate vertices, so we do not need to run {{vnf_merge_points()}}.
|
||||||
// include <BOSL2/beziers.scad>
|
// include <BOSL2/beziers.scad>
|
||||||
// patch = [
|
// patch = [
|
||||||
// // u=0,v=0 u=1,v=0
|
// // u=0,v=0 u=1,v=0
|
||||||
|
@ -1669,7 +1669,7 @@ function _sort_pairs0(arr) =
|
||||||
// boundary = vnf_boundary(bezvnf);
|
// boundary = vnf_boundary(bezvnf);
|
||||||
// vnf_polyhedron(bezvnf);
|
// vnf_polyhedron(bezvnf);
|
||||||
// stroke(boundary,color="green");
|
// stroke(boundary,color="green");
|
||||||
// Example(NoAxes,VPT=[-11.1252,-19.7333,8.39927],VPD=82.6686,VPR=[71.8,0,335.3]): An example with two path components on the boundary. The output from {{vnf_halfspace()}} can contain duplicate vertices, so we must invoke {{vnf_merge_points()}}.
|
// Example(3D,NoAxes,VPT=[-11.1252,-19.7333,8.39927],VPD=82.6686,VPR=[71.8,0,335.3]): An example with two path components on the boundary. The output from {{vnf_halfspace()}} can contain duplicate vertices, so we must invoke {{vnf_merge_points()}}.
|
||||||
// vnf = torus(id=20,od=40,$fn=28);
|
// vnf = torus(id=20,od=40,$fn=28);
|
||||||
// cutvnf=vnf_halfspace([0,1,0,0],
|
// cutvnf=vnf_halfspace([0,1,0,0],
|
||||||
// vnf_halfspace([-1,.5,-2.5,-12], vnf, closed=false),
|
// vnf_halfspace([-1,.5,-2.5,-12], vnf, closed=false),
|
||||||
|
@ -1721,14 +1721,14 @@ function vnf_boundary(vnf,merge=true,idx=false) =
|
||||||
// delta = distance of offset, positive to offset out, negative to offset in
|
// delta = distance of offset, positive to offset out, negative to offset in
|
||||||
// ---
|
// ---
|
||||||
// merge = set to false to suppress the automatic invocation of {{vnf_merge_points()}}. Default: true
|
// merge = set to false to suppress the automatic invocation of {{vnf_merge_points()}}. Default: true
|
||||||
// Example: The original sphere is on the left and an offset sphere on the right.
|
// Example(3D): The original sphere is on the left and an offset sphere on the right.
|
||||||
// vnf = sphere(d=100);
|
// vnf = sphere(d=100);
|
||||||
// xdistribute(spacing=125){
|
// xdistribute(spacing=125){
|
||||||
// vnf_polyhedron(vnf);
|
// vnf_polyhedron(vnf);
|
||||||
// vnf_polyhedron(vnf_small_offset(vnf,18));
|
// vnf_polyhedron(vnf_small_offset(vnf,18));
|
||||||
// }
|
// }
|
||||||
// Example: The polyhedron on the left is enlarged to match the size of the offset polyhedron on the right. Note that the offset does **not** preserve coplanarity of faces. This is because the vertices all move independently, so nothing constrains faces to remain coplanar.
|
// Example(3D): The polyhedron on the left is enlarged to match the size of the offset polyhedron on the right. Note that the offset does **not** preserve coplanarity of faces. This is because the vertices all move independently, so nothing constrains faces to remain coplanar.
|
||||||
// include <BOSL2-fork/polyhedra.scad>
|
// include <BOSL2/polyhedra.scad>
|
||||||
// vnf = regular_polyhedron_info("vnf","pentagonal icositetrahedron",d=25);
|
// vnf = regular_polyhedron_info("vnf","pentagonal icositetrahedron",d=25);
|
||||||
// xdistribute(spacing=300){
|
// xdistribute(spacing=300){
|
||||||
// scale(11)vnf_polyhedron(vnf);
|
// scale(11)vnf_polyhedron(vnf);
|
||||||
|
@ -1796,17 +1796,17 @@ function vnf_small_offset(vnf, delta, merge=true) =
|
||||||
// ---
|
// ---
|
||||||
// style = {{vnf_vertex_array()}} style to use. Default: "default"
|
// style = {{vnf_vertex_array()}} style to use. Default: "default"
|
||||||
// merge = if false then do not run {{vnf_merge_points()}}. Default: true
|
// merge = if false then do not run {{vnf_merge_points()}}. Default: true
|
||||||
// Example:
|
// Example(3D):
|
||||||
// pts = [for(x=[30:5:180]) [for(y=[-6:0.5:6]) [7*y,x, sin(x)*y^2]]];
|
// pts = [for(x=[30:5:180]) [for(y=[-6:0.5:6]) [7*y,x, sin(x)*y^2]]];
|
||||||
// vnf=vnf_vertex_array(pts);
|
// vnf=vnf_vertex_array(pts);
|
||||||
// vnf_polyhedron(vnf_sheet(vnf,-10));
|
// vnf_polyhedron(vnf_sheet(vnf,-10));
|
||||||
// Example: This example has multiple holes
|
// Example(3D): This example has multiple holes
|
||||||
// pts = [for(x=[-10:2:10]) [ for(y=[-10:2:10]) [x,1.4*y,(-abs(x)^3+y^3)/250]]];
|
// pts = [for(x=[-10:2:10]) [ for(y=[-10:2:10]) [x,1.4*y,(-abs(x)^3+y^3)/250]]];
|
||||||
// vnf = vnf_vertex_array(pts);
|
// vnf = vnf_vertex_array(pts);
|
||||||
// newface = list_remove(vnf[1], [43,42,63,88,108,109,135,134,129,155,156,164,165]);
|
// newface = list_remove(vnf[1], [43,42,63,88,108,109,135,134,129,155,156,164,165]);
|
||||||
// newvnf = [vnf[0],newface];
|
// newvnf = [vnf[0],newface];
|
||||||
// vnf_polyhedron(vnf_sheet(newvnf,2));
|
// vnf_polyhedron(vnf_sheet(newvnf,2));
|
||||||
// Example: When applied to a sphere the sheet is constructed inward, so the object appears unchanged, but cutting it in half reveals that we have changed the sphere into a shell.
|
// Example(3D): When applied to a sphere the sheet is constructed inward, so the object appears unchanged, but cutting it in half reveals that we have changed the sphere into a shell.
|
||||||
// vnf = sphere(d=100, $fn=28);
|
// vnf = sphere(d=100, $fn=28);
|
||||||
// left_half()
|
// left_half()
|
||||||
// vnf_polyhedron(vnf_sheet(vnf,15));
|
// vnf_polyhedron(vnf_sheet(vnf,15));
|
||||||
|
|
Loading…
Reference in a new issue