9.3 KiB
BOSL2 Transforms Tutorial
Translation
The translate()
command is very simple:
#sphere(d=20);
translate([0,0,30]) sphere(d=20);
But at a glance, or when the formula to calculate the move is complex, it can be difficult to see
just what axis is being moved along, and in which direction. It's also a bit verbose for such a
frequently used command. For these reasons, BOSL2 provides you with shortcuts for each direction.
These shortcuts are up()
, down()
, fwd()
, back()
, left()
, and right()
:
#sphere(d=20);
up(30) sphere(d=20);
#sphere(d=20);
down(30) sphere(d=20);
#sphere(d=20);
fwd(30) sphere(d=20);
#sphere(d=20);
back(30) sphere(d=20);
#sphere(d=20);
left(30) sphere(d=20);
#sphere(d=20);
right(30) sphere(d=20);
There is also a more generic move()
command that can work just like translate()
, or you can
specify the motion on each axis more clearly:
#sphere(d=20);
move([30,-10]) sphere(d=20);
#sphere(d=20);
move(x=30,y=10) sphere(d=20);
Scaling
The scale()
command is also fairly simple:
scale(2) cube(10, center=true);
scale([1,2,3]) cube(10, center=true);
If you want to only change the scaling on one axis, though, BOSL2 provides clearer
commands to do just that; xscale()
, yscale()
, and zscale()
:
xscale(2) cube(10, center=true);
yscale(2) cube(10, center=true);
zscale(2) cube(10, center=true);
Rotation
The rotate()
command is fairly straightforward:
rotate([0,30,0]) cube(20, center=true);
It is also a bit verbose, and can, at a glance, be difficult to tell just how it is rotating.
BOSL2 provides shortcuts for rotating around each axis, for clarity; xrot()
, yrot()
, and zrot()
:
xrot(30) cube(20, center=true);
yrot(30) cube(20, center=true);
zrot(30) cube(20, center=true);
The rot()
command is a more generic rotation command, and shorter to type than rotate()
:
rot([0,30,15]) cube(20, center=true);
All of the rotation shortcuts can take a cp=
argument, that lets you specify a
centerpoint to rotate around:
cp = [0,0,40];
color("blue") move(cp) sphere(d=3);
#cube(20, center=true);
xrot(45, cp=cp) cube(20, center=true);
cp = [0,0,40];
color("blue") move(cp) sphere(d=3);
#cube(20, center=true);
yrot(45, cp=cp) cube(20, center=true);
cp = [0,40,0];
color("blue") move(cp) sphere(d=3);
#cube(20, center=true);
zrot(45, cp=cp) cube(20, center=true);
You can also do a new trick with it. You can rotate from pointing in one direction, towards another. You give these directions using vectors:
#cylinder(d=10, h=50);
rot(from=[0,0,1], to=[1,0,1]) cylinder(d=10, h=50);
There are several direction vectors constants and aliases you can use for clarity:
Constant | Value | Direction |
---|---|---|
CENTER , CTR |
[ 0, 0, 0] |
Centered |
LEFT |
[-1, 0, 0] |
Towards X- |
RIGHT |
[ 1, 0, 0] |
Towards X+ |
FWD , FORWARD , FRONT |
[ 0,-1, 0] |
Towards Y- |
BACK |
[ 0, 1, 0] |
Towards Y+ |
DOWN , BOTTOM , BOT , BTM |
[ 0, 0,-1] |
Towards Z- |
UP , TOP |
[ 0, 0, 1] |
Towards Z+ |
ALLNEG |
[-1,-1,-1] |
Towards X-Y-Z- |
ALLPOS |
[ 1, 1, 1] |
Towards X+Y+Z+ |
This lets you rewrite the above vector rotation more clearly as:
#cylinder(d=10, h=50);
rot(from=UP, to=UP+RIGHT) cylinder(d=10, h=50);
Mirroring
The standard mirror()
command works like this:
#yrot(60) cylinder(h=50, d1=20, d2=10);
mirror([1,0,0]) yrot(60) cylinder(h=50, d1=20, d2=10);
BOSL2 provides shortcuts for mirroring across the standard axes; xflip()
, yflip()
, and zflip()
:
#yrot(60) cylinder(h=50, d1=20, d2=10);
xflip() yrot(60) cylinder(h=50, d1=20, d2=10);
#xrot(60) cylinder(h=50, d1=20, d2=10);
yflip() xrot(60) cylinder(h=50, d1=20, d2=10);
#cylinder(h=50, d1=20, d2=10);
zflip() cylinder(h=50, d1=20, d2=10);
All of the flip commands can offset where the mirroring is performed:
#zrot(30) cube(20, center=true);
xflip(x=-20) zrot(30) cube(20, center=true);
color("blue",0.25) left(20) cube([0.1,50,50], center=true);
#zrot(30) cube(20, center=true);
yflip(y=20) zrot(30) cube(20, center=true);
color("blue",0.25) back(20) cube([40,0.1,40], center=true);
#xrot(30) cube(20, center=true);
zflip(z=-20) xrot(30) cube(20, center=true);
color("blue",0.25) down(20) cube([40,40,0.1], center=true);
Skewing
One transform that OpenSCAD does not perform natively is skewing.
BOSL2 provides the skew()
command for that. You give it multipliers
for the skews you want to perform. The arguments used all start with s
,
followed by the axis you want to skew along, followed by the axis that
the skewing will increase along. For example, to skew along the X axis as
you get farther along the Y axis, use the sxy=
argument. If you give it
a multiplier of 0.5
, then for each unit further along the Y axis you get,
you will add 0.5
units of skew to the X axis. Giving a negative multiplier
reverses the direction it skews:
skew(sxy=0.5) cube(10,center=false);
skew(sxz=-0.5) cube(10,center=false);
skew(syx=-0.5) cube(10,center=false);
skew(syz=0.5) cube(10,center=false);
skew(szx=-0.5) cube(10,center=false);
skew(szy=0.5) cube(10,center=false);
Distributors
Distributors are modules that are useful for placing multiple copies of a child across a line, area, volume, or ring. Many transforms also distributive variation.
Transforms | Related Distributors |
---|---|
left() , right() |
xcopies() |
fwd() , back() |
ycopies() |
down() , up() |
zcopies() |
move() , translate() |
move_copies() , line_of() , grid2d() , grid3d() |
xrot() |
xrot_copies() |
yrot() |
yrot_copies() |
zrot() |
zrot_copies() |
rot() , rotate() |
rot_copies() , arc_of() |
Transform Distributors
Using xcopies()
, you can make a line of evenly spaced copies of a shape
centered along the X axis. To make a line of 5 spheres, spaced every 20
units along the X axis, do:
xcopies(20, n=5) sphere(d=10);
Note that the first expected argument to xcopies()
is the spacing argument,
so you do not need to supply the spacing=
argument name.
Similarly, ycopies()
makes a line of evenly spaced copies centered along the
Y axis. To make a line of 5 spheres, spaced every 20 units along the Y
axis, do:
ycopies(20, n=5) sphere(d=10);
And, zcopies()
makes a line of evenly spaced copies centered along the Z axis.
To make a line of 5 spheres, spaced every 20 units along the Z axis, do:
zcopies(20, n=5) sphere(d=10);
If you don't give the n=
argument to xcopies()
, ycopies()
or zcopies()
,
then it defaults to 2 (two) copies:
xcopies(20) sphere(d=10);
ycopies(20) sphere(d=10);
zcopies(20) sphere(d=10);
If you don't know the spacing you want, but instead know how long a line you want
the copies distributed over, you can use the l=
argument instead of the spacing=
argument:
xcopies(l=100, n=5) sphere(d=10);
ycopies(l=100, n=5) sphere(d=10);
zcopies(l=100, n=5) sphere(d=10);
If you don't want the line of copies centered on the origin, you can give a starting
point, sp=
, and the line of copies will start there. For xcopies()
, the line of
copies will extend to the right of the starting point.
xcopies(20, n=5, sp=[0,0,0]) sphere(d=10);
For ycopies()
, the line of copies will extend to the back of the starting point.
ycopies(20, n=5, sp=[0,0,0]) sphere(d=10);
For zcopies()
, the line of copies will extend upwards from the starting point.
zcopies(20, n=5, sp=[0,0,0]) sphere(d=10);
If you need to distribute copies along an arbitrary line, you can use the
line_of()
command. You can give both the direction vector and the spacing
of the line of copies with the spacing=
argument:
line_of(spacing=(BACK+RIGHT)*20, n=5) sphere(d=10);
With the p1=
argument, you can specify the starting point of the line:
line_of(spacing=(BACK+RIGHT)*20, n=5, p1=[0,0,0]) sphere(d=10);
IF you give both p1=
and p2=
, you can nail down both the start and endpoints
of the line of copies:
line_of(p1=[0,100,0], p2=[100,0,0], n=4)
sphere(d=10);
Rotational Distributors
You can make six copies of a cone, rotated around a center:
zrot_copies(n=6) yrot(90) cylinder(h=50,d1=0,d2=20);
To Be Completed