BOSL2/paths.scad

789 lines
30 KiB
OpenSCAD
Raw Normal View History

2017-08-30 00:00:16 +00:00
//////////////////////////////////////////////////////////////////////
// LibFile: paths.scad
// Polylines, polygons and paths.
// To use, add the following lines to the beginning of your file:
// ```
// include <BOSL2/std.scad>
// ```
2017-08-30 00:00:16 +00:00
//////////////////////////////////////////////////////////////////////
include <BOSL2/triangulation.scad>
2017-08-30 00:00:16 +00:00
// Section: Functions
// Function: simplify2d_path()
// Description:
// Takes a 2D polyline and removes unnecessary collinear points.
// Usage:
// simplify2d_path(path, [eps])
// Arguments:
// path = A list of 2D path points.
// eps = Largest angle delta between segments to count as colinear. Default: 1e-6
2019-04-16 22:34:54 +00:00
function simplify2d_path(path, eps=1e-6) = simplify_path(path, eps=eps);
// Function: simplify3d_path()
// Description:
// Takes a 3D polyline and removes unnecessary collinear points.
// Usage:
// simplify3d_path(path, [eps])
// Arguments:
// path = A list of 3D path points.
// eps = Largest angle delta between segments to count as colinear. Default: 1e-6
2019-04-16 22:34:54 +00:00
function simplify3d_path(path, eps=1e-6) = simplify_path(path, eps=eps);
2019-03-27 06:22:38 +00:00
// Function: path_length()
// Usage:
2019-07-01 23:25:00 +00:00
// path_length(path,[closed])
2019-03-27 06:22:38 +00:00
// Description:
// Returns the length of the path.
// Arguments:
// path = The list of points of the path to measure.
// closed = true if the path is closed. Default: false
2019-03-27 06:22:38 +00:00
// Example:
// path = [[0,0], [5,35], [60,-25], [80,0]];
// echo(path_length(path));
2019-07-01 23:25:00 +00:00
function path_length(path,closed=false) =
2019-03-27 06:22:38 +00:00
len(path)<2? 0 :
2019-07-01 23:25:00 +00:00
sum([for (i = [0:1:len(path)-2]) norm(path[i+1]-path[i])])+(closed?norm(path[len(path)-1]-path[0]):0);
2019-03-27 06:22:38 +00:00
// Function: path_closest_point()
// Usage:
// path_closest_point(path, pt);
// Description:
// Finds the closest path segment, and point on that segment to the given point.
// Returns `[SEGNUM, POINT]`
// Arguments:
// path = The path to find the closest point on.
// pt = the point to find the closest point to.
// Example(2D):
// path = circle(d=100,$fn=6);
// pt = [20,10];
// closest = path_closest_point(path, pt);
// stroke(path, closed=true);
// color("blue") translate(pt) circle(d=3, $fn=12);
// color("red") translate(closest[1]) circle(d=3, $fn=12);
function path_closest_point(path, pt) =
let(
pts = [for (seg=idx(path)) segment_closest_point(select(path,seg,seg+1),pt)],
dists = [for (p=pts) norm(p-pt)],
min_seg = min_index(dists)
) [min_seg, pts[min_seg]];
// Function: path3d_spiral()
// Description:
// Returns a 3D spiral path.
// Usage:
// path3d_spiral(turns, h, n, r|d, [cp], [scale]);
// Arguments:
// h = Height of spiral.
// turns = Number of turns in spiral.
// n = Number of spiral sides.
// r = Radius of spiral.
// d = Radius of spiral.
// cp = Centerpoint of spiral. Default: `[0,0]`
// scale = [X,Y] scaling factors for each axis. Default: `[1,1]`
// Example(3D):
// trace_polyline(path3d_spiral(turns=2.5, h=100, n=24, r=50), N=1, showpts=true);
function path3d_spiral(turns=3, h=100, n=12, r=undef, d=undef, cp=[0,0], scale=[1,1]) = let(
rr=get_radius(r=r, d=d, dflt=100),
cnt=floor(turns*n),
dz=h/cnt
) [
for (i=[0:1:cnt]) [
rr * cos(i*360/n) * scale.x + cp.x,
rr * sin(i*360/n) * scale.y + cp.y,
i*dz
]
];
// Function: points_along_path3d()
// Usage:
// points_along_path3d(polyline, path);
// Description:
// Calculates the vertices needed to create a `polyhedron()` of the
// extrusion of `polyline` along `path`. The closed 2D path shold be
// centered on the XY plane. The 2D path is extruded perpendicularly
// along the 3D path. Produces a list of 3D vertices. Vertex count
// is `len(polyline)*len(path)`. Gives all the reoriented vertices
// for `polyline` at the first point in `path`, then for the second,
// and so on.
// Arguments:
// polyline = A closed list of 2D path points.
// path = A list of 3D path points.
function points_along_path3d(
polyline, // The 2D polyline to drag along the 3D path.
path, // The 3D polyline path to follow.
q=Q_Ident(), // Used in recursion
n=0 // Used in recursion
) = let(
end = len(path)-1,
v1 = (n == 0)? [0, 0, 1] : normalize(path[n]-path[n-1]),
v2 = (n == end)? normalize(path[n]-path[n-1]) : normalize(path[n+1]-path[n]),
crs = cross(v1, v2),
axis = norm(crs) <= 0.001? [0, 0, 1] : crs,
2019-03-25 10:52:09 +00:00
ang = vector_angle(v1, v2),
hang = ang * (n==0? 1.0 : 0.5),
hrot = Quat(axis, hang),
arot = Quat(axis, ang),
roth = Q_Mul(hrot, q),
rotm = Q_Mul(arot, q)
) concat(
[for (i = [0:1:len(polyline)-1]) Qrot(roth,p=point3d(polyline[i])) + path[n]],
(n == end)? [] : points_along_path3d(polyline, path, rotm, n+1)
);
// Section: 2D Modules
// Module: modulated_circle()
// Description:
// Creates a 2D polygon circle, modulated by one or more superimposed sine waves.
// Arguments:
2017-08-30 00:00:16 +00:00
// r = radius of the base circle.
// sines = array of [amplitude, frequency] pairs, where the frequency is the number of times the cycle repeats around the circle.
// Example(2D):
2017-08-30 00:00:16 +00:00
// modulated_circle(r=40, sines=[[3, 11], [1, 31]], $fn=6);
module modulated_circle(r=40, sines=[10])
{
freqs = len(sines)>0? [for (i=sines) i[1]] : [5];
points = [
for (a = [0 : (360/segs(r)/max(freqs)) : 360])
let(nr=r+sum_of_sines(a,sines)) [nr*cos(a), nr*sin(a)]
];
polygon(points);
}
// Section: 3D Modules
// Module: extrude_from_to()
// Description:
// Extrudes a 2D shape between the points pt1 and pt2. Takes as children a set of 2D shapes to extrude.
// Arguments:
2019-02-03 08:12:37 +00:00
// pt1 = starting point of extrusion.
// pt2 = ending point of extrusion.
// convexity = max number of times a line could intersect a wall of the 2D shape being extruded.
// twist = number of degrees to twist the 2D shape over the entire extrusion length.
// scale = scale multiplier for end of extrusion compared the start.
// slices = Number of slices along the extrusion to break the extrusion into. Useful for refining `twist` extrusions.
// Example(FlatSpin):
2019-02-03 08:12:37 +00:00
// extrude_from_to([0,0,0], [10,20,30], convexity=4, twist=360, scale=3.0, slices=40) {
// xspread(3) circle(3, $fn=32);
// }
module extrude_from_to(pt1, pt2, convexity=undef, twist=undef, scale=undef, slices=undef) {
2019-02-06 11:35:13 +00:00
rtp = xyz_to_spherical(pt2-pt1);
2019-02-03 08:12:37 +00:00
translate(pt1) {
2019-02-06 11:35:13 +00:00
rotate([0, rtp[2], rtp[1]]) {
linear_extrude(height=rtp[0], convexity=convexity, center=false, slices=slices, twist=twist, scale=scale) {
children();
2019-02-03 08:12:37 +00:00
}
}
}
}
// Module: spiral_sweep()
// Description:
// Takes a closed 2D polyline path, centered on the XY plane, and
// extrudes it along a 3D spiral path of a given radius, height and twist.
// Arguments:
2017-08-30 00:00:16 +00:00
// polyline = Array of points of a polyline path, to be extruded.
// h = height of the spiral to extrude along.
// r = radius of the spiral to extrude along.
// twist = number of degrees of rotation to spiral up along height.
2019-05-26 19:47:50 +00:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
2019-05-03 18:32:40 +00:00
// center = If given, overrides `anchor`. A true value sets `anchor=CENTER`, false sets `anchor=BOTTOM`.
2017-08-30 00:00:16 +00:00
// Example:
// poly = [[-10,0], [-3,-5], [3,-5], [10,0], [0,-30]];
// spiral_sweep(poly, h=200, r=50, twist=1080, $fn=36);
module spiral_sweep(polyline, h, r, twist=360, center=undef, anchor=BOTTOM, spin=0, orient=UP) {
2017-08-30 00:00:16 +00:00
pline_count = len(polyline);
steps = ceil(segs(r)*(twist/360));
poly_points = [
for (
p = [0:1:steps]
2017-08-30 00:00:16 +00:00
) let (
a = twist * (p/steps),
dx = r*cos(a),
dy = r*sin(a),
dz = h * (p/steps),
2019-05-14 06:11:55 +00:00
pts = affine3d_apply(
polyline, [
2019-05-14 06:11:55 +00:00
affine3d_xrot(90),
affine3d_zrot(a),
affine3d_translate([dx, dy, dz-h/2])
]
)
) for (pt = pts) pt
2017-08-30 00:00:16 +00:00
];
poly_faces = concat(
[[for (b = [0:1:pline_count-1]) b]],
2017-08-30 00:00:16 +00:00
[
for (
p = [0:1:steps-1],
b = [0:1:pline_count-1],
2017-08-30 00:00:16 +00:00
i = [0:1]
) let (
b2 = (b == pline_count-1)? 0 : b+1,
p0 = p * pline_count + b,
p1 = p * pline_count + b2,
p2 = (p+1) * pline_count + b2,
p3 = (p+1) * pline_count + b,
pt = (i==0)? [p0, p2, p1] : [p0, p3, p2]
) pt
],
[[for (b = [pline_count-1:-1:0]) b+(steps)*pline_count]]
);
2018-09-01 09:38:47 +00:00
tri_faces = triangulate_faces(poly_points, poly_faces);
orient_and_anchor([r,r,h], orient, anchor, spin=spin, center=center, geometry="cylinder", chain=true) {
polyhedron(points=poly_points, faces=tri_faces, convexity=10);
children();
}
2017-08-30 00:00:16 +00:00
}
// Module: path_sweep()
// Description:
// Takes a closed 2D path `polyline`, centered on the XY plane, and extrudes it perpendicularly along a 3D path `path`, forming a solid.
// Arguments:
2017-08-30 00:00:16 +00:00
// polyline = Array of points of a polyline path, to be extruded.
// path = Array of points of a polyline path, to extrude along.
// ang = Angle in degrees to rotate 2D polyline before extrusion.
2018-10-09 22:35:40 +00:00
// convexity = max number of surfaces any single ray could pass through.
// Example(FlatSpin):
// shape = [[0,-10], [5,-3], [5,3], [0,10], [30,0]];
// path = concat(
// [for (a=[30:30:180]) [50*cos(a)+50, 50*sin(a), 20*sin(a)]],
// [for (a=[330:-30:180]) [50*cos(a)-50, 50*sin(a), 20*sin(a)]]
// );
// path_sweep(shape, path, ang=140);
module path_sweep(polyline, path, ang=0, convexity=10) {
2017-08-30 00:00:16 +00:00
pline_count = len(polyline);
path_count = len(path);
polyline = rotate_points2d(path2d(polyline), ang);
2017-08-30 00:00:16 +00:00
poly_points = points_along_path3d(polyline, path);
poly_faces = concat(
[[for (b = [0:1:pline_count-1]) b]],
2017-08-30 00:00:16 +00:00
[
for (
p = [0:1:path_count-2],
b = [0:1:pline_count-1],
2017-08-30 00:00:16 +00:00
i = [0:1]
) let (
b2 = (b == pline_count-1)? 0 : b+1,
p0 = p * pline_count + b,
p1 = p * pline_count + b2,
p2 = (p+1) * pline_count + b2,
p3 = (p+1) * pline_count + b,
pt = (i==0)? [p0, p2, p1] : [p0, p3, p2]
) pt
],
[[for (b = [pline_count-1:-1:0]) b+(path_count-1)*pline_count]]
);
2018-09-01 09:38:47 +00:00
tri_faces = triangulate_faces(poly_points, poly_faces);
polyhedron(points=poly_points, faces=tri_faces, convexity=convexity);
2017-08-30 00:00:16 +00:00
}
// Module: path_extrude()
// Description:
// Extrudes 2D children along a 3D polyline path. This may be slow.
// Arguments:
2018-11-24 09:37:56 +00:00
// path = array of points for the bezier path to extrude along.
// convexity = maximum number of walls a ran can pass through.
// clipsize = increase if artifacts are left. Default: 1000
// Example(FlatSpin):
// path = [ [0, 0, 0], [33, 33, 33], [66, 33, 40], [100, 0, 0], [150,0,0] ];
// path_extrude(path) circle(r=10, $fn=6);
module path_extrude(path, convexity=10, clipsize=100) {
function polyquats(path, q=Q_Ident(), v=[0,0,1], i=0) = let(
v2 = path[i+1] - path[i],
2019-03-25 10:52:09 +00:00
ang = vector_angle(v,v2),
axis = ang>0.001? normalize(cross(v,v2)) : [0,0,1],
newq = Q_Mul(Quat(axis, ang), q),
dist = norm(v2)
) i < (len(path)-2)?
concat([[dist, newq, ang]], polyquats(path, newq, v2, i+1)) :
[[dist, newq, ang]];
epsilon = 0.0001; // Make segments ever so slightly too long so they overlap.
2018-11-24 09:37:56 +00:00
ptcount = len(path);
pquats = polyquats(path);
for (i = [0:1:ptcount-2]) {
2018-11-24 09:37:56 +00:00
pt1 = path[i];
pt2 = path[i+1];
dist = pquats[i][0];
q = pquats[i][1];
difference() {
translate(pt1) {
Qrot(q) {
down(clipsize/2/2) {
linear_extrude(height=dist+clipsize/2, convexity=convexity) {
2018-11-24 09:37:56 +00:00
children();
}
}
}
}
translate(pt1) {
hq = (i > 0)? Q_Slerp(q, pquats[i-1][1], 0.5) : q;
Qrot(hq) down(clipsize/2+epsilon) cube(clipsize, center=true);
}
translate(pt2) {
hq = (i < ptcount-2)? Q_Slerp(q, pquats[i+1][1], 0.5) : q;
Qrot(hq) up(clipsize/2+epsilon) cube(clipsize, center=true);
2018-11-24 09:37:56 +00:00
}
}
}
}
// Module: trace_polyline()
// Description:
// Renders lines between each point of a polyline path.
// Can also optionally show the individual vertex points.
// Arguments:
// pline = The array of points in the polyline.
// showpts = If true, draw vertices and control points.
// N = Mark the first and every Nth vertex after in a different color and shape.
// size = Diameter of the lines drawn.
// color = Color to draw the lines (but not vertices) in.
// Example(FlatSpin):
// polyline = [for (a=[0:30:210]) 10*[cos(a), sin(a), sin(a)]];
// trace_polyline(polyline, showpts=true, size=0.5, color="lightgreen");
module trace_polyline(pline, showpts=false, N=1, size=1, color="yellow") {
sides = segs(size/2);
if (showpts) {
for (i = [0:1:len(pline)-1]) {
translate(pline[i]) {
if (i%N == 0) {
color("blue") sphere(d=size*2.5, $fn=8);
} else {
color("red") {
cylinder(d=size/2, h=size*3, center=true, $fn=8);
xrot(90) cylinder(d=size/2, h=size*3, center=true, $fn=8);
yrot(90) cylinder(d=size/2, h=size*3, center=true, $fn=8);
}
}
}
}
}
if (N!=3) {
path_sweep(circle(d=size,$fn=sides), path3d(pline));
} else {
for (i = [0:1:len(pline)-2]) {
if (N!=3 || (i%N) != 1) {
color(color) extrude_from_to(pline[i], pline[i+1]) circle(d=size, $fn=sides);
}
}
}
}
// Module: debug_polygon()
// Description: A drop-in replacement for `polygon()` that renders and labels the path points.
// Arguments:
// points = The array of 2D polygon vertices.
// paths = The path connections between the vertices.
// convexity = The max number of walls a ray can pass through the given polygon paths.
2019-05-17 21:41:45 +00:00
// Example(Big2D):
// debug_polygon(
// points=concat(
2019-05-27 06:56:41 +00:00
// regular_ngon(or=10, n=8),
// regular_ngon(or=8, n=8)
// ),
// paths=[
// [for (i=[0:7]) i],
// [for (i=[15:-1:8]) i]
// ]
// );
module debug_polygon(points, paths=undef, convexity=2, size=1)
{
pths = is_undef(paths)? [for (i=[0:1:len(points)-1]) i] : is_num(paths[0])? [paths] : paths;
echo(points=points);
echo(paths=paths);
linear_extrude(height=0.01, convexity=convexity, center=true) {
polygon(points=points, paths=paths, convexity=convexity);
}
for (i = [0:1:len(points)-1]) {
color("red") {
up(0.2) {
translate(points[i]) {
linear_extrude(height=0.1, convexity=10, center=true) {
text(text=str(i), size=size, halign="center", valign="center");
}
}
}
}
}
for (j = [0:1:len(paths)-1]) {
path = paths[j];
translate(points[path[0]]) {
color("cyan") up(0.1) cylinder(d=size*1.5, h=0.01, center=false, $fn=12);
}
translate(points[path[len(path)-1]]) {
color("pink") up(0.11) cylinder(d=size*1.5, h=0.01, center=false, $fn=4);
}
for (i = [0:1:len(path)-1]) {
midpt = (points[path[i]] + points[path[(i+1)%len(path)]])/2;
color("blue") {
up(0.2) {
translate(midpt) {
linear_extrude(height=0.1, convexity=10, center=true) {
text(text=str(chr(65+j),i), size=size/2, halign="center", valign="center");
}
}
}
}
}
}
}
2019-07-01 23:25:00 +00:00
// Module: path_spread()
//
// Description:
// Uniformly spreads out copies of children along a path. Copies are located based on path length. If you specify `n` but not spacing then `n` copies will be placed
// with one at path[0] of `closed` is true, or spanning the entire path from start to end if `closed` is false.
// If you specify `spacing` but not `n` then copies will spread out starting from one at path[0] for `closed=true` or at the path center for open paths.
// If you specify `sp` then the copies will start at `sp`.
2019-07-01 23:25:00 +00:00
//
// Usage:
// path_spread(path), [n], [spacing], [sp], [rotate_children], [closed]) ...
//
// Arguments:
// path = the path where children are placed
// n = number of copies
// spacing = space between copies
// sp = if given, copies will start distance sp from the path start and spread beyond that point
//
// Side Effects:
// `$pos` is set to the center of each copy
// `$idx` is set to the index number of each copy. In the case of closed paths the first copy is at `path[0]` unless you give `sp`.
2019-07-01 23:25:00 +00:00
// `$dir` is set to the direction vector of the path at the point where the copy is placed.
// `$normal` is set to the direction of the normal vector to the path direction that is coplanar with the path at this point
//
2019-07-01 23:25:00 +00:00
// Example(2D):
// spiral = [for(theta=[0:360*8]) theta * [cos(theta), sin(theta)]]/100;
// stroke(spiral,width=.25);
// color("red") path_spread(spiral, n=100) circle(r=1);
// Example(2D):
// circle = regular_ngon(n=64, or=10);
// stroke(circle,width=1,closed=true);
2019-07-01 23:25:00 +00:00
// color("green")path_spread(circle, n=7, closed=true) circle(r=1+$idx/3);
// Example(2D):
2019-07-01 23:25:00 +00:00
// heptagon = regular_ngon(n=7, or=10);
// stroke(heptagon, width=1, closed=true);
2019-07-01 23:25:00 +00:00
// color("purple") path_spread(heptagon, n=9, closed=true) square([0.5,3],anchor=FRONT);
// Example(2D): Direction at the corners is the average of the two adjacent edges
// heptagon = regular_ngon(n=7, or=10);
// stroke(heptagon, width=1, closed=true);
2019-07-01 23:25:00 +00:00
// color("purple") path_spread(heptagon, n=7, closed=true) square([0.5,3],anchor=FRONT);
// Example(2D): Don't rotate the children
// heptagon = regular_ngon(n=7, or=10);
// stroke(heptagon, width=1, closed=true);
2019-07-01 23:25:00 +00:00
// color("red") path_spread(heptagon, n=9, closed=true, rotate_children=false) square([0.5,3],anchor=FRONT);
// Example(2D): Open path, specify `n`
// sinwav = [for(theta=[0:360]) 5*[theta/180, sin(theta)]];
// stroke(sinwav,width=.1);
// color("red")path_spread(sinwav, n=5) square([.2,1.5],anchor=FRONT);
// Example(2D)): Open path, specify `n` and `spacing`
// sinwav = [for(theta=[0:360]) 5*[theta/180, sin(theta)]];
// stroke(sinwav,width=.1);
// color("red")path_spread(sinwav, n=5, spacing=1) square([.2,1.5],anchor=FRONT);
// Example(2D)): Closed path, specify `n` and `spacing`, copies centered around circle[0]
// circle = regular_ngon(n=64,or=10);
// stroke(circle,width=.1,closed=true);
2019-07-01 23:25:00 +00:00
// color("red")path_spread(circle, n=10, spacing=1, closed=true) square([.2,1.5],anchor=FRONT);
// Example(2D): Open path, specify `spacing`
// sinwav = [for(theta=[0:360]) 5*[theta/180, sin(theta)]];
// stroke(sinwav,width=.1);
// color("red")path_spread(sinwav, spacing=5) square([.2,1.5],anchor=FRONT);
// Example(2D): Open path, specify `sp`
// sinwav = [for(theta=[0:360]) 5*[theta/180, sin(theta)]];
// stroke(sinwav,width=.1);
// color("red")path_spread(sinwav, n=5, sp=18) square([.2,1.5],anchor=FRONT);
// Example(2D):
2019-07-01 23:25:00 +00:00
// wedge = arc(angle=[0,100], r=10, $fn=64);
// difference(){
// polygon(concat([[0,0]],wedge));
// path_spread(wedge,n=5,spacing=3) fwd(.1)square([1,4],anchor=FRONT);
// }
// Example(Spin): 3d example, with children rotated into the plane of the path
// tilted_circle = lift_plane(regular_ngon(n=64, or=12), [0,0,0], [5,0,5], [0,2,3]);
// path_sweep(regular_ngon(n=16,or=.1),tilted_circle);
// path_spread(tilted_circle, n=15,closed=true) {
// color("blue")cyl(h=3,r=.2, anchor=BOTTOM); // z-aligned cylinder
// color("red")xcyl(h=10,r=.2, anchor=FRONT+LEFT); // x-aligned cylinder
// }
// Example(Spin): 3d example, with rotate_children set to false
// tilted_circle = lift_plane(regular_ngon(n=64, or=12), [0,0,0], [5,0,5], [0,2,3]);
// path_sweep(regular_ngon(n=16,or=.1),tilted_circle);
// path_spread(tilted_circle, n=25,rotate_children=false,closed=true) {
// color("blue")cyl(h=3,r=.2, anchor=BOTTOM); // z-aligned cylinder
// color("red")xcyl(h=10,r=.2, anchor=FRONT+LEFT); // x-aligned cylinder
// }
module path_spread(path, n, spacing, sp=undef, rotate_children=true, closed=false)
{
length = path_length(path,closed);
distances = is_def(sp)? (
is_def(n) && is_def(spacing)? list_range(s=sp, step=spacing, n=n) :
is_def(n)? list_range(s=sp, e=length, n=n) :
list_range(s=sp, step=spacing, e=length)
) : is_def(n) && is_undef(spacing)? (
closed?
let(range=list_range(s=0,e=length, n=n+1)) slice(range,0,-2) :
list_range(s=0, e=length, n=n)
) : (
let(
n = is_def(n)? n : floor(length/spacing)+(closed?0:1),
ptlist = list_range(s=0,step=spacing,n=n),
listcenter = mean(ptlist)
) closed?
sort([for(entry=ptlist) posmod(entry-listcenter,length)]) :
[for(entry=ptlist) entry + length/2-listcenter ]
);
distOK = min(distances)>=0 && max(distances)<=length;
assert(distOK,"Cannot fit all of the copies");
cutlist = path_cut(path, distances, closed, direction=true);
planar = len(path[0])==2;
if (true) for(i=[0:1:len(cutlist)-1]) {
$pos = cutlist[i][0];
$idx = i;
$dir = rotate_children ? (planar?[1,0]:[1,0,0]) : cutlist[i][2];
$normal = rotate_children? (planar?[0,1]:[0,0,1]) : cutlist[i][3];
translate($pos) {
if (rotate_children) {
if(planar) {
rot(from=[0,1],to=cutlist[i][3]) children();
} else {
multmatrix(affine2d_to_3d(transpose([cutlist[i][2],cross(cutlist[i][3],cutlist[i][2]), cutlist[i][3]])))
children();
}
} else {
children();
}
}
}
}
2019-07-01 23:25:00 +00:00
// Function: path_cut()
//
// Usage
// path_cut(path, dists, [closed], [direction])
//
// Description:
// Cuts a path at a list of distances from the first point in the path. Returns a list of the cut
// points and indices of the next point in the path after that point. So for example, a return
// value entry of [[2,3], 5] means that the cut point was [2,3] and the next point on the path after
// this point is path[5]. If the path is too short then path_cut returns undef. If you set
// `direction` to true then `path_cut` will also return the tangent vector to the path and a normal
// vector to the path. It tries to find a normal vector that is coplanar to the path near the cut
// point. If this fails it will return a normal vector parallel to the xy plane. The output with
// direction vectors will be `[point, next_index, tangent, normal]`.
2019-07-01 23:25:00 +00:00
//
// Arguments:
// path = path to cut
// dists = distances where the path should be cut (a list) or a scalar single distance
2019-07-01 23:25:00 +00:00
// closed = set to true if the curve is closed. Default: false
// direction = set to true to return direction vectors. Default: false
//
2019-07-01 23:25:00 +00:00
// Example(NORENDER):
// square=[[0,0],[1,0],[1,1],[0,1]];
// path_cut(square, [.5,1.5,2.5]); // Returns [[[0.5, 0], 1], [[1, 0.5], 2], [[0.5, 1], 3]]
// path_cut(square, [0,1,2,3]); // Returns [[[0, 0], 1], [[1, 0], 2], [[1, 1], 3], [[0, 1], 4]]
// path_cut(square, [0,0.8,1.6,2.4,3.2], closed=true); // Returns [[[0, 0], 1], [[0.8, 0], 1], [[1, 0.6], 2], [[0.6, 1], 3], [[0, 0.8], 4]]
// path_cut(square, [0,0.8,1.6,2.4,3.2]); // Returns [[[0, 0], 1], [[0.8, 0], 1], [[1, 0.6], 2], [[0.6, 1], 3], undef]
function path_cut(path, dists, closed=false, direction=false) =
let(long_enough = len(path) >= (closed ? 3 : 2))
assert(long_enough,len(path)<2 ? "Two points needed to define a path" : "Closed path must include three points")
!is_list(dists)? path_cut(path, [dists],closed, direction)[0] :
let(cuts = _path_cut(path,dists,closed))
!direction ? cuts : let(
dir = _path_cuts_dir(path, cuts, closed),
normals = _path_cuts_normals(path, cuts, dir, closed)
) zip(cuts, array_group(dir,1), array_group(normals,1));
2019-07-01 23:25:00 +00:00
// Main recursive path cut function
function _path_cut(path, dists, closed=false, pind=0, dtotal=0, dind=0, result=[]) =
dind == len(dists) ? result :
let(
lastpt = len(result)>0? select(result,-1)[0] : [],
dpartial = len(result)==0? 0 : norm(lastpt-path[pind]),
nextpoint = dpartial > dists[dind]-dtotal?
[lerp(lastpt,path[pind], (dists[dind]-dtotal)/dpartial),pind] :
_path_cut_single(path, dists[dind]-dtotal-dpartial, closed, pind)
) is_undef(nextpoint)?
concat(result, replist(undef,len(dists)-dind)) :
_path_cut(path, dists, closed, nextpoint[1], dists[dind],dind+1, concat(result, [nextpoint]));
2019-07-01 23:25:00 +00:00
// Search for a single cut point in the path
function _path_cut_single(path, dist, closed=false, ind=0, eps=1e-7) =
ind>=len(path)? undef :
ind==len(path)-1 && !closed? (dist<eps? [path[ind],ind+1] : undef) :
let(d = norm(path[ind]-select(path,ind+1))) d > dist ?
[lerp(path[ind],select(path,ind+1),dist/d), ind+1] :
_path_cut_single(path, dist-d,closed, ind+1, eps);
2019-07-01 23:25:00 +00:00
// Find normal directions to the path, coplanar to local part of the path
// Or return a vector parallel to the x-y plane if the above fails
function _path_cuts_normals(path, cuts, dirs, closed=false) =
[for(i=[0:len(cuts)-1])
len(path[0])==2? [-dirs[i].y, dirs[i].x] : (
let(
plane = len(path)<3 ? undef :
let(start = max(min(cuts[i][1],len(path)-1),2)) _path_plane(path, start, start-2)
)
plane==undef?
normalize([-dirs[i].y, dirs[i].x,0]) :
normalize(cross(dirs[i],cross(plane[0],plane[1])))
)
];
2019-07-01 23:25:00 +00:00
// Scan from the specified point (ind) to find a noncoplanar triple to use
// to define the plane of the path.
2019-07-01 23:25:00 +00:00
function _path_plane(path, ind, i,closed) =
i<(closed?-1:0) ? undef :
!collinear(path[ind],path[ind-1], select(path,i))?
[select(path,i)-path[ind-1],path[ind]-path[ind-1]] :
_path_plane(path, ind, i-1);
2019-07-01 23:25:00 +00:00
// Find the direction of the path at the cut points
function _path_cuts_dir(path, cuts, closed=false, eps=1e-2) =
[for(ind=[0:len(cuts)-1])
let(
nextind = cuts[ind][1],
nextpath = normalize(select(path, nextind+1)-select(path, nextind)),
thispath = normalize(select(path, nextind) - path[nextind-1]),
lastpath = normalize(path[nextind-1] - select(path, nextind-2)),
nextdir =
nextind==len(path) && !closed? lastpath :
(nextind<=len(path)-2 || closed) && approx(cuts[ind][0], path[nextind],eps)?
normalize(nextpath+thispath) :
(nextind>1 || closed) && approx(cuts[ind][0],path[nextind-1],eps)?
normalize(thispath+lastpath) :
thispath
) nextdir
];
// Input `data` is a list that sums to an integer.
// Returns rounded version of input data so that every
// entry is rounded to an integer and the sum is the same as
// that of the input. Works by rounding an entry in the list
// and passing the rounding error forward to the next entry.
// This will generally distribute the error in a uniform manner.
function _sum_preserving_round(data, index=0) =
index == len(data)-1 ? list_set(data, len(data)-1, round(data[len(data)-1])) :
let(
newval = round(data[index]),
error = newval - data[index]
)
_sum_preserving_round(list_set(data, [index,index+1], [newval, data[index+1]-error]), index+1);
2019-11-20 02:03:47 +00:00
// Function: subdivide_path()
// Usage:
// newpath = subdivide_path(path, N, method);
// Description:
// Takes a path as input (closed or open) and subdivides the path to produce a more
// finely sampled path. The new points can be distributed proportional to length
// (`method="length"`) or they can be divided up evenly among all the path segments
// (`method="segment"`). If the extra points don't fit evenly on the path then the
// algorithm attempts to distribute them uniformly. The `exact` option requires that
// the final length is exactly as requested. If you set it to `false` then the
// algorithm will favor uniformity and the output path may have a different number of
// points due to rounding error.
//
// With the `"segment"` method you can also specify a vector of lengths. This vector,
// `N` specfies the desired point count on each segment: with vector input, `subdivide_path`
// attempts to place `N[i]-1` points on segment `i`. The reason for the -1 is to avoid
// double counting the endpoints, which are shared by pairs of segments, so that for
// a closed polygon the total number of points will be sum(N). Note that with an open
// path there is an extra point at the end, so the number of points will be sum(N)+1.
// Arguments:
2019-11-20 02:03:47 +00:00
// path = path to subdivide
// N = scalar total number of points desired or with `method="segment"` can be a vector requesting `N[i]-1` points on segment i.
// closed = set to false if the path is open. Default: True
// exact = if true return exactly the requested number of points, possibly sacrificing uniformity. If false, return uniform point sample that may not match the number of points requested. Default: True
// Example(2D):
// mypath = subdivide_path(square([2,2],center=true), 12);
// place_copies(mypath)circle(r=.1,$fn=32);
// Example(2D):
// mypath = subdivide_path(square([8,2],center=true), 12);
2019-11-20 02:11:50 +00:00
// place_copies(mypath)circle(r=.2,$fn=32);
// Example(2D):
// mypath = subdivide_path(square([8,2],center=true), 12, method="segment");
2019-11-20 02:11:50 +00:00
// place_copies(mypath)circle(r=.2,$fn=32);
// Example(2D):
2019-11-20 02:03:47 +00:00
// mypath = subdivide_path(square([2,2],center=true), 17, closed=false);
// place_copies(mypath)circle(r=.1,$fn=32);
// Example(2D): Specifying different numbers of points on each segment
// mypath = subdivide_path(hexagon(side=2), [2,3,4,5,6,7], method="segment");
// place_copies(mypath)circle(r=.1,$fn=32);
// Example(2D): Requested point total is 14 but 15 points output due to extra end point
// mypath = subdivide_path(pentagon(side=2), [3,4,3,4], method="segment", closed=false);
// place_copies(mypath)circle(r=.1,$fn=32);
// Example(2D): Since 17 is not divisible by 5, a completely uniform distribution is not possible.
// mypath = subdivide_path(pentagon(side=2), 17);
// place_copies(mypath)circle(r=.1,$fn=32);
// Example(2D): With `exact=false` a uniform distribution, but only 15 points
// mypath = subdivide_path(pentagon(side=2), 17, exact=false);
// place_copies(mypath)circle(r=.1,$fn=32);
// Example(2D): With `exact=false` you can also get extra points, here 20 instead of requested 18
// mypath = subdivide_path(pentagon(side=2), 18, exact=false);
// place_copies(mypath)circle(r=.1,$fn=32);
// Example(FlatSpin): Three-dimensional paths also work
// mypath = subdivide_path([[0,0,0],[2,0,1],[2,3,2]], 12);
// place_copies(mypath)sphere(r=.1,$fn=32);
function subdivide_path(path, N, closed=true, exact=true, method="length") =
assert(is_path(path))
assert(method=="length" || method=="segment")
assert((is_num(N) && N>0) || is_vector(N),"Parameter N to subdivide_path must be postive number or vector")
let(
count = len(path) - (closed?0:1),
add_guess =
method=="segment" ?
(is_list(N) ? assert(len(N)==count,"Vector parameter N to subdivide_path has the wrong length")
add_scalar(N,-1)
: replist((N-len(path)) / count, count))
: // method=="length"
assert(is_num(N),"Parameter N to subdivide path must be a number when method=\"length\"")
let(
path_lens = concat([for (i = [0:1:len(path)-2]) norm(path[i+1]-path[i])],
closed?[norm(path[len(path)-1]-path[0])]:[]),
add_density = (N - len(path)) / sum(path_lens)
)
path_lens * add_density,
add = exact ? _sum_preserving_round(add_guess) : [for (val=add_guess) round(val)]
)
concat(
[for (i=[0:1:count])
each [for(j=[0:1:add[i]]) lerp(path[i],select(path,i+1), j/(add[i]+1))]],
closed ? [] : [select(path,-1)]
);
2017-08-30 00:00:16 +00:00
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap