2017-08-30 00:00:16 +00:00
//////////////////////////////////////////////////////////////////////
2019-03-23 04:13:18 +00:00
// LibFile: paths.scad
// Polylines, polygons and paths.
// To use, add the following lines to the beginning of your file:
// ```
2019-04-19 07:25:10 +00:00
// include <BOSL2/std.scad>
2019-03-23 04:13:18 +00:00
// ```
2017-08-30 00:00:16 +00:00
//////////////////////////////////////////////////////////////////////
2019-05-03 19:19:51 +00:00
include < BOSL2/triangulation.scad >
2017-08-30 00:00:16 +00:00
2019-03-23 04:13:18 +00:00
// Section: Functions
// Function: simplify2d_path()
// Description:
// Takes a 2D polyline and removes unnecessary collinear points.
// Usage:
// simplify2d_path(path, [eps])
// Arguments:
// path = A list of 2D path points.
// eps = Largest angle delta between segments to count as colinear. Default: 1e-6
2019-04-16 22:34:54 +00:00
function simplify2d_path ( path , eps = 1e-6 ) = simplify_path ( path , eps = eps ) ;
2019-03-23 04:13:18 +00:00
// Function: simplify3d_path()
// Description:
// Takes a 3D polyline and removes unnecessary collinear points.
// Usage:
// simplify3d_path(path, [eps])
// Arguments:
// path = A list of 3D path points.
// eps = Largest angle delta between segments to count as colinear. Default: 1e-6
2019-04-16 22:34:54 +00:00
function simplify3d_path ( path , eps = 1e-6 ) = simplify_path ( path , eps = eps ) ;
2019-03-23 04:13:18 +00:00
2019-03-27 06:22:38 +00:00
// Function: path_length()
// Usage:
2019-07-01 23:25:00 +00:00
// path_length(path,[closed])
2019-03-27 06:22:38 +00:00
// Description:
// Returns the length of the path.
// Arguments:
// path = The list of points of the path to measure.
2019-08-09 20:07:18 +00:00
// closed = true if the path is closed. Default: false
2019-03-27 06:22:38 +00:00
// Example:
// path = [[0,0], [5,35], [60,-25], [80,0]];
// echo(path_length(path));
2019-07-01 23:25:00 +00:00
function path_length ( path , closed = false ) =
2019-03-27 06:22:38 +00:00
len ( path ) < 2 ? 0 :
2019-07-01 23:25:00 +00:00
sum ( [ for ( i = [ 0 : 1 : len ( path ) - 2 ] ) norm ( path [ i + 1 ] - path [ i ] ) ] ) + ( closed ? norm ( path [ len ( path ) - 1 ] - path [ 0 ] ) : 0 ) ;
2019-03-27 06:22:38 +00:00
2019-08-17 04:22:41 +00:00
// Function: path_closest_point()
// Usage:
// path_closest_point(path, pt);
// Description:
// Finds the closest path segment, and point on that segment to the given point.
// Returns `[SEGNUM, POINT]`
// Arguments:
// path = The path to find the closest point on.
// pt = the point to find the closest point to.
// Example(2D):
// path = circle(d=100,$fn=6);
// pt = [20,10];
// closest = path_closest_point(path, pt);
// stroke(path, closed=true);
// color("blue") translate(pt) circle(d=3, $fn=12);
// color("red") translate(closest[1]) circle(d=3, $fn=12);
function path_closest_point ( path , pt ) =
let (
pts = [ for ( seg = idx ( path ) ) segment_closest_point ( select ( path , seg , seg + 1 ) , pt ) ] ,
dists = [ for ( p = pts ) norm ( p - pt ) ] ,
min_seg = min_index ( dists )
) [ min_seg , pts [ min_seg ] ] ;
2019-03-23 04:13:18 +00:00
// Function: path3d_spiral()
// Description:
// Returns a 3D spiral path.
// Usage:
// path3d_spiral(turns, h, n, r|d, [cp], [scale]);
// Arguments:
// h = Height of spiral.
// turns = Number of turns in spiral.
// n = Number of spiral sides.
// r = Radius of spiral.
// d = Radius of spiral.
// cp = Centerpoint of spiral. Default: `[0,0]`
// scale = [X,Y] scaling factors for each axis. Default: `[1,1]`
// Example(3D):
// trace_polyline(path3d_spiral(turns=2.5, h=100, n=24, r=50), N=1, showpts=true);
function path3d_spiral ( turns = 3 , h = 100 , n = 12 , r = undef , d = undef , cp = [ 0 , 0 ] , scale = [ 1 , 1 ] ) = let (
rr = get_radius ( r = r , d = d , dflt = 100 ) ,
cnt = floor ( turns * n ) ,
dz = h / cnt
) [
2019-05-27 05:34:46 +00:00
for ( i = [ 0 : 1 : cnt ] ) [
2019-03-23 04:13:18 +00:00
rr * cos ( i * 360 / n ) * scale . x + cp . x ,
rr * sin ( i * 360 / n ) * scale . y + cp . y ,
i * dz
]
] ;
// Function: points_along_path3d()
// Usage:
// points_along_path3d(polyline, path);
// Description:
// Calculates the vertices needed to create a `polyhedron()` of the
// extrusion of `polyline` along `path`. The closed 2D path shold be
// centered on the XY plane. The 2D path is extruded perpendicularly
// along the 3D path. Produces a list of 3D vertices. Vertex count
// is `len(polyline)*len(path)`. Gives all the reoriented vertices
// for `polyline` at the first point in `path`, then for the second,
// and so on.
// Arguments:
// polyline = A closed list of 2D path points.
// path = A list of 3D path points.
function points_along_path3d (
polyline , // The 2D polyline to drag along the 3D path.
path , // The 3D polyline path to follow.
q = Q_Ident ( ) , // Used in recursion
n = 0 // Used in recursion
) = let (
end = len ( path ) - 1 ,
v1 = ( n = = 0 ) ? [ 0 , 0 , 1 ] : normalize ( path [ n ] - path [ n - 1 ] ) ,
v2 = ( n = = end ) ? normalize ( path [ n ] - path [ n - 1 ] ) : normalize ( path [ n + 1 ] - path [ n ] ) ,
crs = cross ( v1 , v2 ) ,
axis = norm ( crs ) < = 0.001 ? [ 0 , 0 , 1 ] : crs ,
2019-03-25 10:52:09 +00:00
ang = vector_angle ( v1 , v2 ) ,
2019-03-23 04:13:18 +00:00
hang = ang * ( n = = 0 ? 1.0 : 0.5 ) ,
hrot = Quat ( axis , hang ) ,
arot = Quat ( axis , ang ) ,
roth = Q_Mul ( hrot , q ) ,
rotm = Q_Mul ( arot , q )
) concat (
2019-11-12 03:09:46 +00:00
[ for ( i = [ 0 : 1 : len ( polyline ) - 1 ] ) Qrot ( roth , p = point3d ( polyline [ i ] ) ) + path [ n ] ] ,
2019-03-23 04:13:18 +00:00
( n = = end ) ? [ ] : points_along_path3d ( polyline , path , rotm , n + 1 )
) ;
// Section: 2D Modules
// Module: modulated_circle()
// Description:
// Creates a 2D polygon circle, modulated by one or more superimposed sine waves.
// Arguments:
2017-08-30 00:00:16 +00:00
// r = radius of the base circle.
2019-03-23 04:13:18 +00:00
// sines = array of [amplitude, frequency] pairs, where the frequency is the number of times the cycle repeats around the circle.
// Example(2D):
2017-08-30 00:00:16 +00:00
// modulated_circle(r=40, sines=[[3, 11], [1, 31]], $fn=6);
module modulated_circle ( r = 40 , sines = [ 10 ] )
{
freqs = len ( sines ) > 0 ? [ for ( i = sines ) i [ 1 ] ] : [ 5 ] ;
points = [
for ( a = [ 0 : ( 360 / segs ( r ) / max ( freqs ) ) : 360 ] )
let ( nr = r + sum_of_sines ( a , sines ) ) [ nr * cos ( a ) , nr * sin ( a ) ]
] ;
polygon ( points ) ;
}
2019-03-23 04:13:18 +00:00
// Section: 3D Modules
// Module: extrude_from_to()
// Description:
// Extrudes a 2D shape between the points pt1 and pt2. Takes as children a set of 2D shapes to extrude.
// Arguments:
2019-02-03 08:12:37 +00:00
// pt1 = starting point of extrusion.
// pt2 = ending point of extrusion.
// convexity = max number of times a line could intersect a wall of the 2D shape being extruded.
// twist = number of degrees to twist the 2D shape over the entire extrusion length.
// scale = scale multiplier for end of extrusion compared the start.
// slices = Number of slices along the extrusion to break the extrusion into. Useful for refining `twist` extrusions.
2019-03-23 04:13:18 +00:00
// Example(FlatSpin):
2019-02-03 08:12:37 +00:00
// extrude_from_to([0,0,0], [10,20,30], convexity=4, twist=360, scale=3.0, slices=40) {
// xspread(3) circle(3, $fn=32);
// }
module extrude_from_to ( pt1 , pt2 , convexity = undef , twist = undef , scale = undef , slices = undef ) {
2019-02-06 11:35:13 +00:00
rtp = xyz_to_spherical ( pt2 - pt1 ) ;
2019-02-03 08:12:37 +00:00
translate ( pt1 ) {
2019-02-06 11:35:13 +00:00
rotate ( [ 0 , rtp [ 2 ] , rtp [ 1 ] ] ) {
linear_extrude ( height = rtp [ 0 ] , convexity = convexity , center = false , slices = slices , twist = twist , scale = scale ) {
children ( ) ;
2019-02-03 08:12:37 +00:00
}
}
}
}
2019-06-24 07:32:13 +00:00
// Module: spiral_sweep()
2019-03-23 04:13:18 +00:00
// Description:
// Takes a closed 2D polyline path, centered on the XY plane, and
// extrudes it along a 3D spiral path of a given radius, height and twist.
// Arguments:
2017-08-30 00:00:16 +00:00
// polyline = Array of points of a polyline path, to be extruded.
// h = height of the spiral to extrude along.
// r = radius of the spiral to extrude along.
// twist = number of degrees of rotation to spiral up along height.
2019-05-26 19:47:50 +00:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
2019-05-03 18:32:40 +00:00
// center = If given, overrides `anchor`. A true value sets `anchor=CENTER`, false sets `anchor=BOTTOM`.
2017-08-30 00:00:16 +00:00
// Example:
// poly = [[-10,0], [-3,-5], [3,-5], [10,0], [0,-30]];
2019-06-24 07:32:13 +00:00
// spiral_sweep(poly, h=200, r=50, twist=1080, $fn=36);
module spiral_sweep ( polyline , h , r , twist = 360 , center = undef , anchor = BOTTOM , spin = 0 , orient = UP ) {
2017-08-30 00:00:16 +00:00
pline_count = len ( polyline ) ;
steps = ceil ( segs ( r ) * ( twist / 360 ) ) ;
poly_points = [
for (
2019-05-27 05:34:46 +00:00
p = [ 0 : 1 : steps ]
2017-08-30 00:00:16 +00:00
) let (
a = twist * ( p / steps ) ,
dx = r * cos ( a ) ,
dy = r * sin ( a ) ,
dz = h * ( p / steps ) ,
2019-05-14 06:11:55 +00:00
pts = affine3d_apply (
2019-03-23 04:13:18 +00:00
polyline , [
2019-05-14 06:11:55 +00:00
affine3d_xrot ( 90 ) ,
affine3d_zrot ( a ) ,
affine3d_translate ( [ dx , dy , dz - h / 2 ] )
2019-03-23 04:13:18 +00:00
]
)
) for ( pt = pts ) pt
2017-08-30 00:00:16 +00:00
] ;
poly_faces = concat (
2019-05-27 05:34:46 +00:00
[ [ for ( b = [ 0 : 1 : pline_count - 1 ] ) b ] ] ,
2017-08-30 00:00:16 +00:00
[
for (
2019-05-27 05:34:46 +00:00
p = [ 0 : 1 : steps - 1 ] ,
b = [ 0 : 1 : pline_count - 1 ] ,
2017-08-30 00:00:16 +00:00
i = [ 0 : 1 ]
) let (
b2 = ( b = = pline_count - 1 ) ? 0 : b + 1 ,
p0 = p * pline_count + b ,
p1 = p * pline_count + b2 ,
p2 = ( p + 1 ) * pline_count + b2 ,
p3 = ( p + 1 ) * pline_count + b ,
pt = ( i = = 0 ) ? [ p0 , p2 , p1 ] : [ p0 , p3 , p2 ]
) pt
] ,
[ [ for ( b = [ pline_count - 1 : - 1 : 0 ] ) b + ( steps ) * pline_count ] ]
) ;
2018-09-01 09:38:47 +00:00
tri_faces = triangulate_faces ( poly_points , poly_faces ) ;
2019-05-26 06:31:05 +00:00
orient_and_anchor ( [ r , r , h ] , orient , anchor , spin = spin , center = center , geometry = "cylinder" , chain = true ) {
2019-03-23 04:13:18 +00:00
polyhedron ( points = poly_points , faces = tri_faces , convexity = 10 ) ;
2019-04-20 00:02:17 +00:00
children ( ) ;
2019-03-23 04:13:18 +00:00
}
2017-08-30 00:00:16 +00:00
}
2019-06-24 07:32:13 +00:00
// Module: path_sweep()
2019-03-23 04:13:18 +00:00
// Description:
// Takes a closed 2D path `polyline`, centered on the XY plane, and extrudes it perpendicularly along a 3D path `path`, forming a solid.
// Arguments:
2017-08-30 00:00:16 +00:00
// polyline = Array of points of a polyline path, to be extruded.
// path = Array of points of a polyline path, to extrude along.
2019-03-23 04:13:18 +00:00
// ang = Angle in degrees to rotate 2D polyline before extrusion.
2018-10-09 22:35:40 +00:00
// convexity = max number of surfaces any single ray could pass through.
2019-03-23 04:13:18 +00:00
// Example(FlatSpin):
// shape = [[0,-10], [5,-3], [5,3], [0,10], [30,0]];
// path = concat(
// [for (a=[30:30:180]) [50*cos(a)+50, 50*sin(a), 20*sin(a)]],
// [for (a=[330:-30:180]) [50*cos(a)-50, 50*sin(a), 20*sin(a)]]
// );
2019-06-24 07:32:13 +00:00
// path_sweep(shape, path, ang=140);
module path_sweep ( polyline , path , ang = 0 , convexity = 10 ) {
2017-08-30 00:00:16 +00:00
pline_count = len ( polyline ) ;
path_count = len ( path ) ;
2019-12-27 05:40:47 +00:00
polyline = rotate_points2d ( ccw_polygon ( path2d ( polyline ) ) , ang ) ;
2017-08-30 00:00:16 +00:00
poly_points = points_along_path3d ( polyline , path ) ;
poly_faces = concat (
2019-05-27 05:34:46 +00:00
[ [ for ( b = [ 0 : 1 : pline_count - 1 ] ) b ] ] ,
2017-08-30 00:00:16 +00:00
[
for (
2019-05-27 05:34:46 +00:00
p = [ 0 : 1 : path_count - 2 ] ,
b = [ 0 : 1 : pline_count - 1 ] ,
2017-08-30 00:00:16 +00:00
i = [ 0 : 1 ]
) let (
b2 = ( b = = pline_count - 1 ) ? 0 : b + 1 ,
p0 = p * pline_count + b ,
p1 = p * pline_count + b2 ,
p2 = ( p + 1 ) * pline_count + b2 ,
p3 = ( p + 1 ) * pline_count + b ,
pt = ( i = = 0 ) ? [ p0 , p2 , p1 ] : [ p0 , p3 , p2 ]
) pt
] ,
[ [ for ( b = [ pline_count - 1 : - 1 : 0 ] ) b + ( path_count - 1 ) * pline_count ] ]
) ;
2018-09-01 09:38:47 +00:00
tri_faces = triangulate_faces ( poly_points , poly_faces ) ;
polyhedron ( points = poly_points , faces = tri_faces , convexity = convexity ) ;
2017-08-30 00:00:16 +00:00
}
2019-06-24 07:32:13 +00:00
// Module: path_extrude()
2019-03-23 04:13:18 +00:00
// Description:
// Extrudes 2D children along a 3D polyline path. This may be slow.
// Arguments:
2018-11-24 09:37:56 +00:00
// path = array of points for the bezier path to extrude along.
// convexity = maximum number of walls a ran can pass through.
// clipsize = increase if artifacts are left. Default: 1000
2019-03-23 04:13:18 +00:00
// Example(FlatSpin):
// path = [ [0, 0, 0], [33, 33, 33], [66, 33, 40], [100, 0, 0], [150,0,0] ];
2019-06-24 07:32:13 +00:00
// path_extrude(path) circle(r=10, $fn=6);
module path_extrude ( path , convexity = 10 , clipsize = 100 ) {
2019-02-02 10:19:05 +00:00
function polyquats ( path , q = Q_Ident ( ) , v = [ 0 , 0 , 1 ] , i = 0 ) = let (
v2 = path [ i + 1 ] - path [ i ] ,
2019-03-25 10:52:09 +00:00
ang = vector_angle ( v , v2 ) ,
2019-02-02 10:19:05 +00:00
axis = ang > 0.001 ? normalize ( cross ( v , v2 ) ) : [ 0 , 0 , 1 ] ,
newq = Q_Mul ( Quat ( axis , ang ) , q ) ,
dist = norm ( v2 )
) i < ( len ( path ) - 2 ) ?
concat ( [ [ dist , newq , ang ] ] , polyquats ( path , newq , v2 , i + 1 ) ) :
[ [ dist , newq , ang ] ] ;
epsilon = 0.0001 ; // Make segments ever so slightly too long so they overlap.
2018-11-24 09:37:56 +00:00
ptcount = len ( path ) ;
2019-02-02 10:19:05 +00:00
pquats = polyquats ( path ) ;
2019-05-27 05:34:46 +00:00
for ( i = [ 0 : 1 : ptcount - 2 ] ) {
2018-11-24 09:37:56 +00:00
pt1 = path [ i ] ;
pt2 = path [ i + 1 ] ;
2019-02-02 10:19:05 +00:00
dist = pquats [ i ] [ 0 ] ;
q = pquats [ i ] [ 1 ] ;
difference ( ) {
translate ( pt1 ) {
Qrot ( q ) {
down ( clipsize / 2 / 2 ) {
linear_extrude ( height = dist + clipsize / 2 , convexity = convexity ) {
2018-11-24 09:37:56 +00:00
children ( ) ;
}
}
}
2019-02-02 10:19:05 +00:00
}
translate ( pt1 ) {
hq = ( i > 0 ) ? Q_Slerp ( q , pquats [ i - 1 ] [ 1 ] , 0.5 ) : q ;
Qrot ( hq ) down ( clipsize / 2 + epsilon ) cube ( clipsize , center = true ) ;
}
translate ( pt2 ) {
hq = ( i < ptcount - 2 ) ? Q_Slerp ( q , pquats [ i + 1 ] [ 1 ] , 0.5 ) : q ;
Qrot ( hq ) up ( clipsize / 2 + epsilon ) cube ( clipsize , center = true ) ;
2018-11-24 09:37:56 +00:00
}
}
}
}
2019-03-23 04:13:18 +00:00
// Module: trace_polyline()
// Description:
// Renders lines between each point of a polyline path.
// Can also optionally show the individual vertex points.
// Arguments:
// pline = The array of points in the polyline.
2019-12-27 05:40:47 +00:00
// closed = If true, draw the segment from the last vertex to the first. Default: false
2019-03-23 04:13:18 +00:00
// showpts = If true, draw vertices and control points.
// N = Mark the first and every Nth vertex after in a different color and shape.
// size = Diameter of the lines drawn.
// color = Color to draw the lines (but not vertices) in.
// Example(FlatSpin):
// polyline = [for (a=[0:30:210]) 10*[cos(a), sin(a), sin(a)]];
// trace_polyline(polyline, showpts=true, size=0.5, color="lightgreen");
2019-12-27 05:40:47 +00:00
module trace_polyline ( pline , closed = false , showpts = false , N = 1 , size = 1 , color = "yellow" ) {
2019-06-22 00:38:14 +00:00
sides = segs ( size / 2 ) ;
2019-12-27 05:40:47 +00:00
pline = closed ? close_path ( pline ) : pline ;
2019-03-23 04:13:18 +00:00
if ( showpts ) {
2019-05-27 05:34:46 +00:00
for ( i = [ 0 : 1 : len ( pline ) - 1 ] ) {
2019-03-23 04:13:18 +00:00
translate ( pline [ i ] ) {
if ( i % N = = 0 ) {
color ( "blue" ) sphere ( d = size * 2.5 , $fn = 8 ) ;
} else {
color ( "red" ) {
cylinder ( d = size / 2 , h = size * 3 , center = true , $fn = 8 ) ;
xrot ( 90 ) cylinder ( d = size / 2 , h = size * 3 , center = true , $fn = 8 ) ;
yrot ( 90 ) cylinder ( d = size / 2 , h = size * 3 , center = true , $fn = 8 ) ;
}
}
}
}
}
2019-06-22 00:38:14 +00:00
if ( N ! = 3 ) {
2019-12-27 05:40:47 +00:00
color ( color ) path_sweep ( circle ( d = size , $fn = sides ) , path3d ( pline ) ) ;
2019-06-22 00:38:14 +00:00
} else {
for ( i = [ 0 : 1 : len ( pline ) - 2 ] ) {
if ( N ! = 3 || ( i % N ) ! = 1 ) {
color ( color ) extrude_from_to ( pline [ i ] , pline [ i + 1 ] ) circle ( d = size , $fn = sides ) ;
}
2019-03-23 04:13:18 +00:00
}
}
}
// Module: debug_polygon()
// Description: A drop-in replacement for `polygon()` that renders and labels the path points.
// Arguments:
// points = The array of 2D polygon vertices.
// paths = The path connections between the vertices.
// convexity = The max number of walls a ray can pass through the given polygon paths.
2019-05-17 21:41:45 +00:00
// Example(Big2D):
2019-03-23 04:13:18 +00:00
// debug_polygon(
// points=concat(
2019-05-27 06:56:41 +00:00
// regular_ngon(or=10, n=8),
// regular_ngon(or=8, n=8)
2019-03-23 04:13:18 +00:00
// ),
// paths=[
// [for (i=[0:7]) i],
// [for (i=[15:-1:8]) i]
// ]
// );
module debug_polygon ( points , paths = undef , convexity = 2 , size = 1 )
{
2019-05-27 05:34:46 +00:00
pths = is_undef ( paths ) ? [ for ( i = [ 0 : 1 : len ( points ) - 1 ] ) i ] : is_num ( paths [ 0 ] ) ? [ paths ] : paths ;
2019-03-23 04:13:18 +00:00
echo ( points = points ) ;
echo ( paths = paths ) ;
linear_extrude ( height = 0.01 , convexity = convexity , center = true ) {
polygon ( points = points , paths = paths , convexity = convexity ) ;
}
2019-05-27 05:34:46 +00:00
for ( i = [ 0 : 1 : len ( points ) - 1 ] ) {
2019-03-23 04:13:18 +00:00
color ( "red" ) {
up ( 0.2 ) {
translate ( points [ i ] ) {
linear_extrude ( height = 0.1 , convexity = 10 , center = true ) {
text ( text = str ( i ) , size = size , halign = "center" , valign = "center" ) ;
}
}
}
}
}
2019-05-27 05:34:46 +00:00
for ( j = [ 0 : 1 : len ( paths ) - 1 ] ) {
2019-03-23 04:13:18 +00:00
path = paths [ j ] ;
translate ( points [ path [ 0 ] ] ) {
color ( "cyan" ) up ( 0.1 ) cylinder ( d = size * 1.5 , h = 0.01 , center = false , $fn = 12 ) ;
}
translate ( points [ path [ len ( path ) - 1 ] ] ) {
color ( "pink" ) up ( 0.11 ) cylinder ( d = size * 1.5 , h = 0.01 , center = false , $fn = 4 ) ;
}
2019-05-27 05:34:46 +00:00
for ( i = [ 0 : 1 : len ( path ) - 1 ] ) {
2019-03-23 04:13:18 +00:00
midpt = ( points [ path [ i ] ] + points [ path [ ( i + 1 ) % len ( path ) ] ] ) / 2 ;
color ( "blue" ) {
up ( 0.2 ) {
translate ( midpt ) {
linear_extrude ( height = 0.1 , convexity = 10 , center = true ) {
text ( text = str ( chr ( 65 + j ) , i ) , size = size / 2 , halign = "center" , valign = "center" ) ;
}
}
}
}
}
}
}
2019-07-01 23:25:00 +00:00
// Module: path_spread()
//
// Description:
// Uniformly spreads out copies of children along a path. Copies are located based on path length. If you specify `n` but not spacing then `n` copies will be placed
// with one at path[0] of `closed` is true, or spanning the entire path from start to end if `closed` is false.
// If you specify `spacing` but not `n` then copies will spread out starting from one at path[0] for `closed=true` or at the path center for open paths.
2019-08-09 20:07:18 +00:00
// If you specify `sp` then the copies will start at `sp`.
2019-07-01 23:25:00 +00:00
//
// Usage:
// path_spread(path), [n], [spacing], [sp], [rotate_children], [closed]) ...
//
// Arguments:
// path = the path where children are placed
// n = number of copies
// spacing = space between copies
// sp = if given, copies will start distance sp from the path start and spread beyond that point
//
// Side Effects:
// `$pos` is set to the center of each copy
2019-08-09 20:07:18 +00:00
// `$idx` is set to the index number of each copy. In the case of closed paths the first copy is at `path[0]` unless you give `sp`.
2019-07-01 23:25:00 +00:00
// `$dir` is set to the direction vector of the path at the point where the copy is placed.
// `$normal` is set to the direction of the normal vector to the path direction that is coplanar with the path at this point
2019-08-09 20:07:18 +00:00
//
2019-07-01 23:25:00 +00:00
// Example(2D):
// spiral = [for(theta=[0:360*8]) theta * [cos(theta), sin(theta)]]/100;
// stroke(spiral,width=.25);
// color("red") path_spread(spiral, n=100) circle(r=1);
// Example(2D):
// circle = regular_ngon(n=64, or=10);
2019-07-12 20:11:13 +00:00
// stroke(circle,width=1,closed=true);
2019-07-01 23:25:00 +00:00
// color("green")path_spread(circle, n=7, closed=true) circle(r=1+$idx/3);
2019-08-09 20:07:18 +00:00
// Example(2D):
2019-07-01 23:25:00 +00:00
// heptagon = regular_ngon(n=7, or=10);
2019-07-12 20:11:13 +00:00
// stroke(heptagon, width=1, closed=true);
2019-07-01 23:25:00 +00:00
// color("purple") path_spread(heptagon, n=9, closed=true) square([0.5,3],anchor=FRONT);
// Example(2D): Direction at the corners is the average of the two adjacent edges
// heptagon = regular_ngon(n=7, or=10);
2019-07-12 20:11:13 +00:00
// stroke(heptagon, width=1, closed=true);
2019-07-01 23:25:00 +00:00
// color("purple") path_spread(heptagon, n=7, closed=true) square([0.5,3],anchor=FRONT);
// Example(2D): Don't rotate the children
// heptagon = regular_ngon(n=7, or=10);
2019-07-12 20:11:13 +00:00
// stroke(heptagon, width=1, closed=true);
2019-07-01 23:25:00 +00:00
// color("red") path_spread(heptagon, n=9, closed=true, rotate_children=false) square([0.5,3],anchor=FRONT);
// Example(2D): Open path, specify `n`
// sinwav = [for(theta=[0:360]) 5*[theta/180, sin(theta)]];
// stroke(sinwav,width=.1);
// color("red")path_spread(sinwav, n=5) square([.2,1.5],anchor=FRONT);
// Example(2D)): Open path, specify `n` and `spacing`
// sinwav = [for(theta=[0:360]) 5*[theta/180, sin(theta)]];
// stroke(sinwav,width=.1);
// color("red")path_spread(sinwav, n=5, spacing=1) square([.2,1.5],anchor=FRONT);
// Example(2D)): Closed path, specify `n` and `spacing`, copies centered around circle[0]
// circle = regular_ngon(n=64,or=10);
2019-07-12 20:11:13 +00:00
// stroke(circle,width=.1,closed=true);
2019-07-01 23:25:00 +00:00
// color("red")path_spread(circle, n=10, spacing=1, closed=true) square([.2,1.5],anchor=FRONT);
// Example(2D): Open path, specify `spacing`
// sinwav = [for(theta=[0:360]) 5*[theta/180, sin(theta)]];
// stroke(sinwav,width=.1);
// color("red")path_spread(sinwav, spacing=5) square([.2,1.5],anchor=FRONT);
// Example(2D): Open path, specify `sp`
// sinwav = [for(theta=[0:360]) 5*[theta/180, sin(theta)]];
// stroke(sinwav,width=.1);
// color("red")path_spread(sinwav, n=5, sp=18) square([.2,1.5],anchor=FRONT);
2019-08-09 20:07:18 +00:00
// Example(2D):
2019-07-01 23:25:00 +00:00
// wedge = arc(angle=[0,100], r=10, $fn=64);
// difference(){
// polygon(concat([[0,0]],wedge));
// path_spread(wedge,n=5,spacing=3) fwd(.1)square([1,4],anchor=FRONT);
// }
// Example(Spin): 3d example, with children rotated into the plane of the path
// tilted_circle = lift_plane(regular_ngon(n=64, or=12), [0,0,0], [5,0,5], [0,2,3]);
// path_sweep(regular_ngon(n=16,or=.1),tilted_circle);
// path_spread(tilted_circle, n=15,closed=true) {
// color("blue")cyl(h=3,r=.2, anchor=BOTTOM); // z-aligned cylinder
// color("red")xcyl(h=10,r=.2, anchor=FRONT+LEFT); // x-aligned cylinder
// }
// Example(Spin): 3d example, with rotate_children set to false
// tilted_circle = lift_plane(regular_ngon(n=64, or=12), [0,0,0], [5,0,5], [0,2,3]);
// path_sweep(regular_ngon(n=16,or=.1),tilted_circle);
// path_spread(tilted_circle, n=25,rotate_children=false,closed=true) {
// color("blue")cyl(h=3,r=.2, anchor=BOTTOM); // z-aligned cylinder
// color("red")xcyl(h=10,r=.2, anchor=FRONT+LEFT); // x-aligned cylinder
// }
module path_spread ( path , n , spacing , sp = undef , rotate_children = true , closed = false )
{
2019-08-09 20:07:18 +00:00
length = path_length ( path , closed ) ;
distances = is_def ( sp ) ? (
is_def ( n ) && is_def ( spacing ) ? list_range ( s = sp , step = spacing , n = n ) :
is_def ( n ) ? list_range ( s = sp , e = length , n = n ) :
list_range ( s = sp , step = spacing , e = length )
) : is_def ( n ) && is_undef ( spacing ) ? (
closed ?
let ( range = list_range ( s = 0 , e = length , n = n + 1 ) ) slice ( range , 0 , - 2 ) :
list_range ( s = 0 , e = length , n = n )
) : (
let (
n = is_def ( n ) ? n : floor ( length / spacing ) + ( closed ? 0 : 1 ) ,
ptlist = list_range ( s = 0 , step = spacing , n = n ) ,
listcenter = mean ( ptlist )
) closed ?
sort ( [ for ( entry = ptlist ) posmod ( entry - listcenter , length ) ] ) :
[ for ( entry = ptlist ) entry + length / 2 - listcenter ]
) ;
distOK = min ( distances ) >= 0 && max ( distances ) < = length ;
assert ( distOK , "Cannot fit all of the copies" ) ;
cutlist = path_cut ( path , distances , closed , direction = true ) ;
planar = len ( path [ 0 ] ) = = 2 ;
if ( true ) for ( i = [ 0 : 1 : len ( cutlist ) - 1 ] ) {
$ pos = cutlist [ i ] [ 0 ] ;
$ idx = i ;
$ dir = rotate_children ? ( planar ? [ 1 , 0 ] : [ 1 , 0 , 0 ] ) : cutlist [ i ] [ 2 ] ;
$ normal = rotate_children ? ( planar ? [ 0 , 1 ] : [ 0 , 0 , 1 ] ) : cutlist [ i ] [ 3 ] ;
translate ( $ pos ) {
if ( rotate_children ) {
if ( planar ) {
rot ( from = [ 0 , 1 ] , to = cutlist [ i ] [ 3 ] ) children ( ) ;
} else {
multmatrix ( affine2d_to_3d ( transpose ( [ cutlist [ i ] [ 2 ] , cross ( cutlist [ i ] [ 3 ] , cutlist [ i ] [ 2 ] ) , cutlist [ i ] [ 3 ] ] ) ) )
children ( ) ;
}
} else {
children ( ) ;
}
}
}
}
2019-07-01 23:25:00 +00:00
// Function: path_cut()
//
// Usage
// path_cut(path, dists, [closed], [direction])
//
// Description:
2019-08-09 20:07:18 +00:00
// Cuts a path at a list of distances from the first point in the path. Returns a list of the cut
// points and indices of the next point in the path after that point. So for example, a return
// value entry of [[2,3], 5] means that the cut point was [2,3] and the next point on the path after
// this point is path[5]. If the path is too short then path_cut returns undef. If you set
// `direction` to true then `path_cut` will also return the tangent vector to the path and a normal
// vector to the path. It tries to find a normal vector that is coplanar to the path near the cut
// point. If this fails it will return a normal vector parallel to the xy plane. The output with
// direction vectors will be `[point, next_index, tangent, normal]`.
2019-07-01 23:25:00 +00:00
//
// Arguments:
// path = path to cut
2019-08-09 20:07:18 +00:00
// dists = distances where the path should be cut (a list) or a scalar single distance
2019-07-01 23:25:00 +00:00
// closed = set to true if the curve is closed. Default: false
2019-08-09 20:07:18 +00:00
// direction = set to true to return direction vectors. Default: false
2019-07-12 20:21:23 +00:00
//
2019-07-01 23:25:00 +00:00
// Example(NORENDER):
// square=[[0,0],[1,0],[1,1],[0,1]];
// path_cut(square, [.5,1.5,2.5]); // Returns [[[0.5, 0], 1], [[1, 0.5], 2], [[0.5, 1], 3]]
// path_cut(square, [0,1,2,3]); // Returns [[[0, 0], 1], [[1, 0], 2], [[1, 1], 3], [[0, 1], 4]]
// path_cut(square, [0,0.8,1.6,2.4,3.2], closed=true); // Returns [[[0, 0], 1], [[0.8, 0], 1], [[1, 0.6], 2], [[0.6, 1], 3], [[0, 0.8], 4]]
// path_cut(square, [0,0.8,1.6,2.4,3.2]); // Returns [[[0, 0], 1], [[0.8, 0], 1], [[1, 0.6], 2], [[0.6, 1], 3], undef]
function path_cut ( path , dists , closed = false , direction = false ) =
2019-08-09 20:07:18 +00:00
let ( long_enough = len ( path ) >= ( closed ? 3 : 2 ) )
assert ( long_enough , len ( path ) < 2 ? "Two points needed to define a path" : "Closed path must include three points" )
! is_list ( dists ) ? path_cut ( path , [ dists ] , closed , direction ) [ 0 ] :
let ( cuts = _path_cut ( path , dists , closed ) )
! direction ? cuts : let (
dir = _path_cuts_dir ( path , cuts , closed ) ,
normals = _path_cuts_normals ( path , cuts , dir , closed )
) zip ( cuts , array_group ( dir , 1 ) , array_group ( normals , 1 ) ) ;
2019-07-01 23:25:00 +00:00
// Main recursive path cut function
2019-08-09 20:07:18 +00:00
function _path_cut ( path , dists , closed = false , pind = 0 , dtotal = 0 , dind = 0 , result = [ ] ) =
dind = = len ( dists ) ? result :
let (
lastpt = len ( result ) > 0 ? select ( result , - 1 ) [ 0 ] : [ ] ,
dpartial = len ( result ) = = 0 ? 0 : norm ( lastpt - path [ pind ] ) ,
nextpoint = dpartial > dists [ dind ] - dtotal ?
[ lerp ( lastpt , path [ pind ] , ( dists [ dind ] - dtotal ) / dpartial ) , pind ] :
_path_cut_single ( path , dists [ dind ] - dtotal - dpartial , closed , pind )
) is_undef ( nextpoint ) ?
concat ( result , replist ( undef , len ( dists ) - dind ) ) :
_path_cut ( path , dists , closed , nextpoint [ 1 ] , dists [ dind ] , dind + 1 , concat ( result , [ nextpoint ] ) ) ;
2019-07-01 23:25:00 +00:00
// Search for a single cut point in the path
2019-08-09 20:07:18 +00:00
function _path_cut_single ( path , dist , closed = false , ind = 0 , eps = 1e-7 ) =
ind >= len ( path ) ? undef :
ind = = len ( path ) - 1 && ! closed ? ( dist < eps ? [ path [ ind ] , ind + 1 ] : undef ) :
let ( d = norm ( path [ ind ] - select ( path , ind + 1 ) ) ) d > dist ?
[ lerp ( path [ ind ] , select ( path , ind + 1 ) , dist / d ) , ind + 1 ] :
_path_cut_single ( path , dist - d , closed , ind + 1 , eps ) ;
2019-07-01 23:25:00 +00:00
// Find normal directions to the path, coplanar to local part of the path
// Or return a vector parallel to the x-y plane if the above fails
function _path_cuts_normals ( path , cuts , dirs , closed = false ) =
2019-08-09 20:07:18 +00:00
[ for ( i = [ 0 : len ( cuts ) - 1 ] )
len ( path [ 0 ] ) = = 2 ? [ - dirs [ i ] . y , dirs [ i ] . x ] : (
let (
plane = len ( path ) < 3 ? undef :
let ( start = max ( min ( cuts [ i ] [ 1 ] , len ( path ) - 1 ) , 2 ) ) _path_plane ( path , start , start - 2 )
)
plane = = undef ?
normalize ( [ - dirs [ i ] . y , dirs [ i ] . x , 0 ] ) :
normalize ( cross ( dirs [ i ] , cross ( plane [ 0 ] , plane [ 1 ] ) ) )
)
] ;
2019-07-01 23:25:00 +00:00
// Scan from the specified point (ind) to find a noncoplanar triple to use
2019-08-09 20:07:18 +00:00
// to define the plane of the path.
2019-07-01 23:25:00 +00:00
function _path_plane ( path , ind , i , closed ) =
2019-08-09 20:07:18 +00:00
i < ( closed ? - 1 : 0 ) ? undef :
! collinear ( path [ ind ] , path [ ind - 1 ] , select ( path , i ) ) ?
[ select ( path , i ) - path [ ind - 1 ] , path [ ind ] - path [ ind - 1 ] ] :
_path_plane ( path , ind , i - 1 ) ;
2019-07-01 23:25:00 +00:00
// Find the direction of the path at the cut points
function _path_cuts_dir ( path , cuts , closed = false , eps = 1e-2 ) =
2019-08-09 20:07:18 +00:00
[ for ( ind = [ 0 : len ( cuts ) - 1 ] )
let (
nextind = cuts [ ind ] [ 1 ] ,
nextpath = normalize ( select ( path , nextind + 1 ) - select ( path , nextind ) ) ,
thispath = normalize ( select ( path , nextind ) - path [ nextind - 1 ] ) ,
lastpath = normalize ( path [ nextind - 1 ] - select ( path , nextind - 2 ) ) ,
nextdir =
nextind = = len ( path ) && ! closed ? lastpath :
( nextind < = len ( path ) - 2 || closed ) && approx ( cuts [ ind ] [ 0 ] , path [ nextind ] , eps ) ?
normalize ( nextpath + thispath ) :
( nextind > 1 || closed ) && approx ( cuts [ ind ] [ 0 ] , path [ nextind - 1 ] , eps ) ?
normalize ( thispath + lastpath ) :
thispath
) nextdir
] ;
2019-03-23 04:13:18 +00:00
2019-11-19 22:42:11 +00:00
// Input `data` is a list that sums to an integer.
// Returns rounded version of input data so that every
// entry is rounded to an integer and the sum is the same as
// that of the input. Works by rounding an entry in the list
// and passing the rounding error forward to the next entry.
// This will generally distribute the error in a uniform manner.
function _sum_preserving_round ( data , index = 0 ) =
index = = len ( data ) - 1 ? list_set ( data , len ( data ) - 1 , round ( data [ len ( data ) - 1 ] ) ) :
let (
newval = round ( data [ index ] ) ,
error = newval - data [ index ]
)
_sum_preserving_round ( list_set ( data , [ index , index + 1 ] , [ newval , data [ index + 1 ] - error ] ) , index + 1 ) ;
2019-11-20 02:03:47 +00:00
// Function: subdivide_path()
// Usage:
// newpath = subdivide_path(path, N, method);
2019-11-19 22:42:11 +00:00
// Description:
// Takes a path as input (closed or open) and subdivides the path to produce a more
// finely sampled path. The new points can be distributed proportional to length
// (`method="length"`) or they can be divided up evenly among all the path segments
// (`method="segment"`). If the extra points don't fit evenly on the path then the
// algorithm attempts to distribute them uniformly. The `exact` option requires that
// the final length is exactly as requested. If you set it to `false` then the
// algorithm will favor uniformity and the output path may have a different number of
// points due to rounding error.
//
// With the `"segment"` method you can also specify a vector of lengths. This vector,
// `N` specfies the desired point count on each segment: with vector input, `subdivide_path`
// attempts to place `N[i]-1` points on segment `i`. The reason for the -1 is to avoid
// double counting the endpoints, which are shared by pairs of segments, so that for
// a closed polygon the total number of points will be sum(N). Note that with an open
// path there is an extra point at the end, so the number of points will be sum(N)+1.
// Arguments:
2019-11-20 02:03:47 +00:00
// path = path to subdivide
// N = scalar total number of points desired or with `method="segment"` can be a vector requesting `N[i]-1` points on segment i.
// closed = set to false if the path is open. Default: True
// exact = if true return exactly the requested number of points, possibly sacrificing uniformity. If false, return uniform point sample that may not match the number of points requested. Default: True
2019-12-07 03:16:31 +00:00
// method = One of `"length"` or `"segment"`. If `"length"`, adds vertices evenly along the total path length. If `"segment"`, adds points evenly among the segments. Default: `"length"`
2019-11-19 22:42:11 +00:00
// Example(2D):
// mypath = subdivide_path(square([2,2],center=true), 12);
// place_copies(mypath)circle(r=.1,$fn=32);
// Example(2D):
// mypath = subdivide_path(square([8,2],center=true), 12);
2019-11-20 02:11:50 +00:00
// place_copies(mypath)circle(r=.2,$fn=32);
2019-11-19 22:42:11 +00:00
// Example(2D):
// mypath = subdivide_path(square([8,2],center=true), 12, method="segment");
2019-11-20 02:11:50 +00:00
// place_copies(mypath)circle(r=.2,$fn=32);
2019-11-19 22:42:11 +00:00
// Example(2D):
2019-11-20 02:03:47 +00:00
// mypath = subdivide_path(square([2,2],center=true), 17, closed=false);
2019-11-19 22:42:11 +00:00
// place_copies(mypath)circle(r=.1,$fn=32);
// Example(2D): Specifying different numbers of points on each segment
// mypath = subdivide_path(hexagon(side=2), [2,3,4,5,6,7], method="segment");
// place_copies(mypath)circle(r=.1,$fn=32);
// Example(2D): Requested point total is 14 but 15 points output due to extra end point
// mypath = subdivide_path(pentagon(side=2), [3,4,3,4], method="segment", closed=false);
// place_copies(mypath)circle(r=.1,$fn=32);
// Example(2D): Since 17 is not divisible by 5, a completely uniform distribution is not possible.
// mypath = subdivide_path(pentagon(side=2), 17);
// place_copies(mypath)circle(r=.1,$fn=32);
// Example(2D): With `exact=false` a uniform distribution, but only 15 points
// mypath = subdivide_path(pentagon(side=2), 17, exact=false);
// place_copies(mypath)circle(r=.1,$fn=32);
// Example(2D): With `exact=false` you can also get extra points, here 20 instead of requested 18
// mypath = subdivide_path(pentagon(side=2), 18, exact=false);
// place_copies(mypath)circle(r=.1,$fn=32);
// Example(FlatSpin): Three-dimensional paths also work
// mypath = subdivide_path([[0,0,0],[2,0,1],[2,3,2]], 12);
// place_copies(mypath)sphere(r=.1,$fn=32);
function subdivide_path ( path , N , closed = true , exact = true , method = "length" ) =
assert ( is_path ( path ) )
assert ( method = = "length" || method = = "segment" )
assert ( ( is_num ( N ) && N > 0 ) || is_vector ( N ) , "Parameter N to subdivide_path must be postive number or vector" )
let (
count = len ( path ) - ( closed ? 0 : 1 ) ,
add_guess =
method = = "segment" ?
( is_list ( N ) ? assert ( len ( N ) = = count , "Vector parameter N to subdivide_path has the wrong length" )
add_scalar ( N , - 1 )
: replist ( ( N - len ( path ) ) / count , count ) )
: // method=="length"
assert ( is_num ( N ) , "Parameter N to subdivide path must be a number when method=\"length\"" )
let (
path_lens = concat ( [ for ( i = [ 0 : 1 : len ( path ) - 2 ] ) norm ( path [ i + 1 ] - path [ i ] ) ] ,
closed ? [ norm ( path [ len ( path ) - 1 ] - path [ 0 ] ) ] : [ ] ) ,
add_density = ( N - len ( path ) ) / sum ( path_lens )
)
path_lens * add_density ,
add = exact ? _sum_preserving_round ( add_guess ) : [ for ( val = add_guess ) round ( val ) ]
)
concat (
[ for ( i = [ 0 : 1 : count ] )
each [ for ( j = [ 0 : 1 : add [ i ] ] ) lerp ( path [ i ] , select ( path , i + 1 ) , j / ( add [ i ] + 1 ) ) ] ] ,
closed ? [ ] : [ select ( path , - 1 ) ]
) ;
2017-08-30 00:00:16 +00:00
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap