2017-08-30 00:00:16 +00:00
//////////////////////////////////////////////////////////////////////
2019-03-23 04:13:18 +00:00
// LibFile: math.scad
// Math helper functions.
// To use, add the following lines to the beginning of your file:
// ```
2019-04-19 07:25:10 +00:00
// use <BOSL2/std.scad>
2019-03-23 04:13:18 +00:00
// ```
2017-08-30 00:00:16 +00:00
//////////////////////////////////////////////////////////////////////
2019-03-28 09:26:16 +00:00
2019-04-12 07:08:56 +00:00
// Section: Math Constants
PHI = ( 1 + sqrt ( 5 ) ) / 2 ; // The golden ratio phi.
2019-04-16 22:34:54 +00:00
EPSILON = 1e-9 ; // A really small value useful in comparing FP numbers. ie: abs(a-b)<EPSILON
2020-02-07 06:51:16 +00:00
INF = 1 / 0 ; // The value `inf`, useful for comparisons.
NAN = acos ( 2 ) ; // The value `nan`, useful for comparisons.
2019-04-12 07:08:56 +00:00
2020-01-09 04:43:19 +00:00
// Section: Simple math
// Function: sqr()
// Usage:
// sqr(x);
// Description:
2020-03-21 13:19:49 +00:00
// Returns the square of the given number or entries in list
2020-01-09 04:43:19 +00:00
// Examples:
2020-03-21 13:19:49 +00:00
// sqr(3); // Returns: 9
// sqr(-4); // Returns: 16
// sqr([3,4]); // Returns: [9,16]
// sqr([[1,2],[3,4]]); // Returns [[1,4],[9,16]]
// sqr([[1,2],3]); // Returns [[1,4],9]
2020-07-29 21:41:02 +00:00
function sqr ( x ) =
is_list ( x ) ? [ for ( val = x ) sqr ( val ) ] :
is_finite ( x ) ? x * x :
2020-08-03 06:23:50 +00:00
assert ( is_finite ( x ) || is_vector ( x ) , "Input is not a number nor a list of numbers." ) ;
2020-01-09 04:43:19 +00:00
// Function: log2()
// Usage:
// foo = log2(x);
// Description:
// Returns the logarithm base 2 of the value given.
// Examples:
// log2(0.125); // Returns: -3
// log2(16); // Returns: 4
// log2(256); // Returns: 8
2020-07-29 21:41:02 +00:00
function log2 ( x ) =
assert ( is_finite ( x ) , "Input is not a number." )
ln ( x ) / ln ( 2 ) ;
2020-01-09 04:43:19 +00:00
2020-07-29 21:41:02 +00:00
// this may return NAN or INF; should it check x>0 ?
2020-01-09 04:43:19 +00:00
// Function: hypot()
// Usage:
// l = hypot(x,y,[z]);
// Description:
// Calculate hypotenuse length of a 2D or 3D triangle.
// Arguments:
// x = Length on the X axis.
// y = Length on the Y axis.
// z = Length on the Z axis. Optional.
// Example:
// l = hypot(3,4); // Returns: 5
// l = hypot(3,4,5); // Returns: ~7.0710678119
2020-07-29 21:41:02 +00:00
function hypot ( x , y , z = 0 ) =
assert ( is_vector ( [ x , y , z ] ) , "Improper number(s)." )
norm ( [ x , y , z ] ) ;
2020-01-09 04:43:19 +00:00
// Function: factorial()
// Usage:
// x = factorial(n,[d]);
// Description:
2020-07-11 16:22:59 +00:00
// Returns the factorial of the given integer value, or n!/d! if d is given.
2020-01-09 04:43:19 +00:00
// Arguments:
// n = The integer number to get the factorial of. (n!)
// d = If given, the returned value will be (n! / d!)
// Example:
// x = factorial(4); // Returns: 24
// y = factorial(6); // Returns: 720
// z = factorial(9); // Returns: 362880
2020-07-11 16:22:59 +00:00
function factorial ( n , d = 0 ) =
2020-08-03 23:38:36 +00:00
assert ( is_int ( n ) && is_int ( d ) && n >= 0 && d >= 0 , "Factorial is defined only for non negative integers" )
2020-07-11 16:22:59 +00:00
assert ( d < = n , "d cannot be larger than n" )
product ( [ 1 , for ( i = [ n : - 1 : d + 1 ] ) i ] ) ;
2020-01-09 04:43:19 +00:00
2020-07-29 21:41:02 +00:00
// Function: binomial()
// Usage:
// x = binomial(n);
// Description:
// Returns the binomial coefficients of the integer `n`.
// Arguments:
// n = The integer to get the binomial coefficients of
// Example:
// x = binomial(3); // Returns: [1,3,3,1]
// y = binomial(4); // Returns: [1,4,6,4,1]
// z = binomial(6); // Returns: [1,6,15,20,15,6,1]
function binomial ( n ) =
assert ( is_int ( n ) && n > 0 , "Input is not an integer greater than 0." )
[ for ( c = 1 , i = 0 ;
i < = n ;
c = c * ( n - i ) / ( i + 1 ) , i = i + 1
) c ] ;
// Function: binomial_coefficient()
// Usage:
// x = binomial_coefficient(n,k);
// Description:
// Returns the k-th binomial coefficient of the integer `n`.
// Arguments:
// n = The integer to get the binomial coefficient of
// k = The binomial coefficient index
// Example:
// x = binomial_coefficient(3,2); // Returns: 3
// y = binomial_coefficient(10,6); // Returns: 210
function binomial_coefficient ( n , k ) =
assert ( is_int ( n ) && is_int ( k ) , "Some input is not a number." )
k < 0 || k > n ? 0 :
k = = 0 || k = = n ? 1 :
let ( k = min ( k , n - k ) ,
b = [ for ( c = 1 , i = 0 ;
i < = k ;
c = c * ( n - i ) / ( i + 1 ) , i = i + 1
) c ] )
b [ len ( b ) - 1 ] ;
2020-01-09 04:43:19 +00:00
// Function: lerp()
// Usage:
// x = lerp(a, b, u);
// l = lerp(a, b, LIST);
// Description:
// Interpolate between two values or vectors.
// If `u` is given as a number, returns the single interpolated value.
// If `u` is 0.0, then the value of `a` is returned.
// If `u` is 1.0, then the value of `b` is returned.
// If `u` is a range, or list of numbers, returns a list of interpolated values.
2020-07-29 21:41:02 +00:00
// It is valid to use a `u` value outside the range 0 to 1. The result will be an extrapolation
// along the slope formed by `a` and `b`.
2020-01-09 04:43:19 +00:00
// Arguments:
// a = First value or vector.
// b = Second value or vector.
// u = The proportion from `a` to `b` to calculate. Standard range is 0.0 to 1.0, inclusive. If given as a list or range of values, returns a list of results.
// Example:
// x = lerp(0,20,0.3); // Returns: 6
// x = lerp(0,20,0.8); // Returns: 16
// x = lerp(0,20,-0.1); // Returns: -2
// x = lerp(0,20,1.1); // Returns: 22
// p = lerp([0,0],[20,10],0.25); // Returns [5,2.5]
// l = lerp(0,20,[0.4,0.6]); // Returns: [8,12]
// l = lerp(0,20,[0.25:0.25:0.75]); // Returns: [5,10,15]
// Example(2D):
// p1 = [-50,-20]; p2 = [50,30];
// stroke([p1,p2]);
// pts = lerp(p1, p2, [0:1/8:1]);
// // Points colored in ROYGBIV order.
// rainbow(pts) translate($item) circle(d=3,$fn=8);
function lerp ( a , b , u ) =
2020-05-30 02:04:34 +00:00
assert ( same_shape ( a , b ) , "Bad or inconsistent inputs to lerp" )
2020-07-29 21:41:02 +00:00
is_finite ( u ) ? ( 1 - u ) * a + u * b :
2020-08-03 23:38:36 +00:00
assert ( is_finite ( u ) || is_vector ( u ) || valid_range ( u ) , "Input u to lerp must be a number, vector, or valid range." )
2020-07-29 21:41:02 +00:00
[ for ( v = u ) ( 1 - v ) * a + v * b ] ;
2020-01-09 04:43:19 +00:00
2020-07-29 05:52:12 +00:00
2020-01-09 04:43:19 +00:00
// Section: Hyperbolic Trigonometry
// Function: sinh()
// Description: Takes a value `x`, and returns the hyperbolic sine of it.
function sinh ( x ) =
2020-07-29 21:41:02 +00:00
assert ( is_finite ( x ) , "The input must be a finite number." )
2020-05-30 02:04:34 +00:00
( exp ( x ) - exp ( - x ) ) / 2 ;
2020-01-09 04:43:19 +00:00
// Function: cosh()
// Description: Takes a value `x`, and returns the hyperbolic cosine of it.
function cosh ( x ) =
2020-07-29 21:41:02 +00:00
assert ( is_finite ( x ) , "The input must be a finite number." )
2020-05-30 02:04:34 +00:00
( exp ( x ) + exp ( - x ) ) / 2 ;
2020-01-09 04:43:19 +00:00
// Function: tanh()
// Description: Takes a value `x`, and returns the hyperbolic tangent of it.
function tanh ( x ) =
2020-07-29 21:41:02 +00:00
assert ( is_finite ( x ) , "The input must be a finite number." )
2020-05-30 02:04:34 +00:00
sinh ( x ) / cosh ( x ) ;
2020-01-09 04:43:19 +00:00
// Function: asinh()
// Description: Takes a value `x`, and returns the inverse hyperbolic sine of it.
function asinh ( x ) =
2020-07-29 21:41:02 +00:00
assert ( is_finite ( x ) , "The input must be a finite number." )
2020-05-30 02:04:34 +00:00
ln ( x + sqrt ( x * x + 1 ) ) ;
2020-01-09 04:43:19 +00:00
// Function: acosh()
// Description: Takes a value `x`, and returns the inverse hyperbolic cosine of it.
function acosh ( x ) =
2020-07-29 21:41:02 +00:00
assert ( is_finite ( x ) , "The input must be a finite number." )
2020-05-30 02:04:34 +00:00
ln ( x + sqrt ( x * x - 1 ) ) ;
2020-01-09 04:43:19 +00:00
// Function: atanh()
// Description: Takes a value `x`, and returns the inverse hyperbolic tangent of it.
function atanh ( x ) =
2020-07-29 21:41:02 +00:00
assert ( is_finite ( x ) , "The input must be a finite number." )
2020-05-30 02:04:34 +00:00
ln ( ( 1 + x ) / ( 1 - x ) ) / 2 ;
2020-01-09 04:43:19 +00:00
// Section: Quantization
2019-03-23 04:13:18 +00:00
// Function: quant()
// Description:
// Quantize a value `x` to an integer multiple of `y`, rounding to the nearest multiple.
2019-08-24 18:51:24 +00:00
// If `x` is a list, then every item in that list will be recursively quantized.
2019-03-23 04:13:18 +00:00
// Arguments:
// x = The value to quantize.
// y = The multiple to quantize to.
2019-10-23 00:09:08 +00:00
// Example:
// quant(12,4); // Returns: 12
// quant(13,4); // Returns: 12
// quant(13.1,4); // Returns: 12
// quant(14,4); // Returns: 16
// quant(14.1,4); // Returns: 16
// quant(15,4); // Returns: 16
// quant(16,4); // Returns: 16
// quant(9,3); // Returns: 9
// quant(10,3); // Returns: 9
// quant(10.4,3); // Returns: 9
// quant(10.5,3); // Returns: 12
// quant(11,3); // Returns: 12
// quant(12,3); // Returns: 12
// quant([12,13,13.1,14,14.1,15,16],4); // Returns: [12,12,12,16,16,16,16]
// quant([9,10,10.4,10.5,11,12],3); // Returns: [9,9,9,12,12,12]
// quant([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,9,9],[12,12,12]]
2019-08-24 18:51:24 +00:00
function quant ( x , y ) =
2020-08-02 00:08:24 +00:00
assert ( is_finite ( y ) && ! approx ( y , 0 , eps = 1e-24 ) , "The multiple must be a non zero number." )
2020-07-29 21:41:02 +00:00
is_list ( x )
? [ for ( v = x ) quant ( v , y ) ]
: assert ( is_finite ( x ) , "The input to quantize must be a number or a list of numbers." )
floor ( x / y + 0.5 ) * y ;
2017-08-30 00:00:16 +00:00
2020-07-29 05:52:12 +00:00
2019-03-23 04:13:18 +00:00
// Function: quantdn()
// Description:
// Quantize a value `x` to an integer multiple of `y`, rounding down to the previous multiple.
2019-08-24 18:51:24 +00:00
// If `x` is a list, then every item in that list will be recursively quantized down.
2019-03-23 04:13:18 +00:00
// Arguments:
// x = The value to quantize.
// y = The multiple to quantize to.
2019-10-23 00:09:08 +00:00
// Examples:
// quantdn(12,4); // Returns: 12
// quantdn(13,4); // Returns: 12
// quantdn(13.1,4); // Returns: 12
// quantdn(14,4); // Returns: 12
// quantdn(14.1,4); // Returns: 12
// quantdn(15,4); // Returns: 12
// quantdn(16,4); // Returns: 16
// quantdn(9,3); // Returns: 9
// quantdn(10,3); // Returns: 9
// quantdn(10.4,3); // Returns: 9
// quantdn(10.5,3); // Returns: 9
// quantdn(11,3); // Returns: 9
// quantdn(12,3); // Returns: 12
// quantdn([12,13,13.1,14,14.1,15,16],4); // Returns: [12,12,12,12,12,12,16]
// quantdn([9,10,10.4,10.5,11,12],3); // Returns: [9,9,9,9,9,12]
// quantdn([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,9,9],[9,9,12]]
2019-08-24 18:51:24 +00:00
function quantdn ( x , y ) =
2020-08-02 00:08:24 +00:00
assert ( is_finite ( y ) && ! approx ( y , 0 , eps = 1e-24 ) , "The multiple must be a non zero number." )
2020-07-29 21:41:02 +00:00
is_list ( x )
? [ for ( v = x ) quantdn ( v , y ) ]
: assert ( is_finite ( x ) , "The input to quantize must be a number or a list of numbers." )
floor ( x / y ) * y ;
2017-08-30 00:00:16 +00:00
2019-03-23 04:13:18 +00:00
// Function: quantup()
// Description:
// Quantize a value `x` to an integer multiple of `y`, rounding up to the next multiple.
2019-08-24 18:51:24 +00:00
// If `x` is a list, then every item in that list will be recursively quantized up.
2019-03-23 04:13:18 +00:00
// Arguments:
// x = The value to quantize.
// y = The multiple to quantize to.
2019-10-23 00:09:08 +00:00
// Examples:
// quantup(12,4); // Returns: 12
// quantup(13,4); // Returns: 16
// quantup(13.1,4); // Returns: 16
// quantup(14,4); // Returns: 16
// quantup(14.1,4); // Returns: 16
// quantup(15,4); // Returns: 16
// quantup(16,4); // Returns: 16
// quantup(9,3); // Returns: 9
// quantup(10,3); // Returns: 12
// quantup(10.4,3); // Returns: 12
// quantup(10.5,3); // Returns: 12
// quantup(11,3); // Returns: 12
// quantup(12,3); // Returns: 12
// quantup([12,13,13.1,14,14.1,15,16],4); // Returns: [12,16,16,16,16,16,16]
// quantup([9,10,10.4,10.5,11,12],3); // Returns: [9,12,12,12,12,12]
// quantup([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,12,12],[12,12,12]]
2019-08-24 18:51:24 +00:00
function quantup ( x , y ) =
2020-08-02 00:08:24 +00:00
assert ( is_finite ( y ) && ! approx ( y , 0 , eps = 1e-24 ) , "The multiple must be a non zero number." )
2020-07-29 21:41:02 +00:00
is_list ( x )
? [ for ( v = x ) quantup ( v , y ) ]
: assert ( is_finite ( x ) , "The input to quantize must be a number or a list of numbers." )
ceil ( x / y ) * y ;
2017-08-30 00:00:16 +00:00
2020-01-09 04:43:19 +00:00
// Section: Constraints and Modulos
2019-03-23 04:13:18 +00:00
// Function: constrain()
// Usage:
// constrain(v, minval, maxval);
// Description:
// Constrains value to a range of values between minval and maxval, inclusive.
// Arguments:
// v = value to constrain.
// minval = minimum value to return, if out of range.
// maxval = maximum value to return, if out of range.
2019-10-23 00:09:08 +00:00
// Example:
// constrain(-5, -1, 1); // Returns: -1
// constrain(5, -1, 1); // Returns: 1
// constrain(0.3, -1, 1); // Returns: 0.3
// constrain(9.1, 0, 9); // Returns: 9
// constrain(-0.1, 0, 9); // Returns: 0
2020-07-29 21:41:02 +00:00
function constrain ( v , minval , maxval ) =
assert ( is_finite ( v + minval + maxval ) , "Input must be finite number(s)." )
min ( maxval , max ( minval , v ) ) ;
2018-02-16 22:49:32 +00:00
2019-03-23 04:13:18 +00:00
// Function: posmod()
// Usage:
// posmod(x,m)
// Description:
// Returns the positive modulo `m` of `x`. Value returned will be in the range 0 ... `m`-1.
// Arguments:
// x = The value to constrain.
// m = Modulo value.
2019-10-23 00:09:08 +00:00
// Example:
// posmod(-700,360); // Returns: 340
// posmod(-270,360); // Returns: 90
// posmod(-120,360); // Returns: 240
// posmod(120,360); // Returns: 120
// posmod(270,360); // Returns: 270
// posmod(700,360); // Returns: 340
// posmod(3,2.5); // Returns: 0.5
2020-07-29 21:41:02 +00:00
function posmod ( x , m ) =
assert ( is_finite ( x ) && is_finite ( m ) && ! approx ( m , 0 ) , "Input must be finite numbers. The divisor cannot be zero." )
( x % m + m ) % m ;
2019-03-23 04:13:18 +00:00
2019-09-23 23:38:07 +00:00
// Function: modang(x)
// Usage:
// ang = modang(x)
// Description:
// Takes an angle in degrees and normalizes it to an equivalent angle value between -180 and 180.
2019-10-23 00:09:08 +00:00
// Example:
// modang(-700,360); // Returns: 20
// modang(-270,360); // Returns: 90
// modang(-120,360); // Returns: -120
// modang(120,360); // Returns: 120
// modang(270,360); // Returns: -90
// modang(700,360); // Returns: -20
2019-09-23 23:38:07 +00:00
function modang ( x ) =
2020-07-29 21:41:02 +00:00
assert ( is_finite ( x ) , "Input must be a finite number." )
2020-05-30 02:04:34 +00:00
let ( xx = posmod ( x , 360 ) ) xx < 180 ? xx : xx - 360 ;
2019-09-23 23:38:07 +00:00
2019-03-23 04:13:18 +00:00
// Function: modrange()
// Usage:
// modrange(x, y, m, [step])
// Description:
2020-07-29 21:41:02 +00:00
// Returns a normalized list of numbers from `x` to `y`, by `step`, modulo `m`. Wraps if `x` > `y`.
2019-03-23 04:13:18 +00:00
// Arguments:
// x = The start value to constrain.
// y = The end value to constrain.
// m = Modulo value.
// step = Step by this amount.
// Examples:
2019-10-23 00:09:08 +00:00
// modrange(90,270,360, step=45); // Returns: [90,135,180,225,270]
// modrange(270,90,360, step=45); // Returns: [270,315,0,45,90]
// modrange(90,270,360, step=-45); // Returns: [90,45,0,315,270]
// modrange(270,90,360, step=-45); // Returns: [270,225,180,135,90]
2019-03-23 04:13:18 +00:00
function modrange ( x , y , m , step = 1 ) =
2020-08-03 23:38:36 +00:00
assert ( is_finite ( x + y + step + m ) && ! approx ( m , 0 ) , "Input must be finite numbers and the module value cannot be zero." )
2020-05-30 02:04:34 +00:00
let (
a = posmod ( x , m ) ,
b = posmod ( y , m ) ,
2020-08-03 23:38:36 +00:00
c = step > 0 ? ( a > b ? b + m : b )
: ( a < b ? b - m : b )
) [ for ( i = [ a : step : c ] ) ( i % m + m ) % m ] ;
2017-08-30 00:00:16 +00:00
2019-08-07 00:12:28 +00:00
2020-01-09 04:43:19 +00:00
// Section: Random Number Generation
2019-08-07 00:12:28 +00:00
2019-07-19 04:58:41 +00:00
// Function: rand_int()
2019-05-30 00:42:09 +00:00
// Usage:
2020-07-29 21:41:02 +00:00
// rand_int(minval,maxval,N,[seed]);
2019-05-30 00:42:09 +00:00
// Description:
2020-07-29 21:41:02 +00:00
// Return a list of random integers in the range of minval to maxval, inclusive.
2019-05-30 00:42:09 +00:00
// Arguments:
2020-07-29 21:41:02 +00:00
// minval = Minimum integer value to return.
// maxval = Maximum integer value to return.
2019-05-30 00:42:09 +00:00
// N = Number of random integers to return.
2019-11-07 06:19:19 +00:00
// seed = If given, sets the random number seed.
2019-10-23 00:09:08 +00:00
// Example:
// ints = rand_int(0,100,3);
// int = rand_int(-10,10,1)[0];
2020-07-29 21:41:02 +00:00
function rand_int ( minval , maxval , N , seed = undef ) =
assert ( is_finite ( minval + maxval + N ) && ( is_undef ( seed ) || is_finite ( seed ) ) , "Input must be finite numbers." )
assert ( maxval >= minval , "Max value cannot be smaller than minval" )
let ( rvect = is_def ( seed ) ? rands ( minval , maxval + 1 , N , seed ) : rands ( minval , maxval + 1 , N ) )
2020-05-30 02:04:34 +00:00
[ for ( entry = rvect ) floor ( entry ) ] ;
2019-05-30 00:42:09 +00:00
2019-11-07 06:19:19 +00:00
// Function: gaussian_rands()
2019-04-10 22:53:40 +00:00
// Usage:
2019-11-07 06:19:19 +00:00
// gaussian_rands(mean, stddev, [N], [seed])
2019-04-10 22:53:40 +00:00
// Description:
// Returns a random number with a gaussian/normal distribution.
// Arguments:
// mean = The average random number returned.
// stddev = The standard deviation of the numbers to be returned.
2019-11-07 06:19:19 +00:00
// N = Number of random numbers to return. Default: 1
// seed = If given, sets the random number seed.
function gaussian_rands ( mean , stddev , N = 1 , seed = undef ) =
2020-07-29 21:41:02 +00:00
assert ( is_finite ( mean + stddev + N ) && ( is_undef ( seed ) || is_finite ( seed ) ) , "Input must be finite numbers." )
2020-05-30 02:04:34 +00:00
let ( nums = is_undef ( seed ) ? rands ( 0 , 1 , N * 2 ) : rands ( 0 , 1 , N * 2 , seed ) )
[ for ( i = list_range ( N ) ) mean + stddev * sqrt ( - 2 * ln ( nums [ i * 2 ] ) ) * cos ( 360 * nums [ i * 2 + 1 ] ) ] ;
2019-04-10 22:53:40 +00:00
2019-11-07 06:19:19 +00:00
// Function: log_rands()
2019-04-10 22:53:40 +00:00
// Usage:
2019-11-07 06:19:19 +00:00
// log_rands(minval, maxval, factor, [N], [seed]);
2019-04-10 22:53:40 +00:00
// Description:
// Returns a single random number, with a logarithmic distribution.
// Arguments:
// minval = Minimum value to return.
// maxval = Maximum value to return. `minval` <= X < `maxval`.
// factor = Log factor to use. Values of X are returned `factor` times more often than X+1.
2019-11-07 06:19:19 +00:00
// N = Number of random numbers to return. Default: 1
// seed = If given, sets the random number seed.
function log_rands ( minval , maxval , factor , N = 1 , seed = undef ) =
2020-07-29 21:41:02 +00:00
assert ( is_finite ( minval + maxval + N )
&& ( is_undef ( seed ) || is_finite ( seed ) )
&& factor > 0 ,
"Input must be finite numbers. `factor` should be greater than zero." )
2020-05-30 02:04:34 +00:00
assert ( maxval >= minval , "maxval cannot be smaller than minval" )
let (
minv = 1 - 1 / pow ( factor , minval ) ,
maxv = 1 - 1 / pow ( factor , maxval ) ,
nums = is_undef ( seed ) ? rands ( minv , maxv , N ) : rands ( minv , maxv , N , seed )
) [ for ( num = nums ) - ln ( 1 - num ) / ln ( factor ) ] ;
2019-04-10 22:53:40 +00:00
2017-08-30 00:00:16 +00:00
2020-01-09 04:43:19 +00:00
// Section: GCD/GCF, LCM
2018-09-01 09:38:47 +00:00
2020-01-09 04:43:19 +00:00
// Function: gcd()
// Usage:
// gcd(a,b)
// Description:
// Computes the Greatest Common Divisor/Factor of `a` and `b`.
function gcd ( a , b ) =
2020-05-30 02:04:34 +00:00
assert ( is_int ( a ) && is_int ( b ) , "Arguments to gcd must be integers" )
b = = 0 ? abs ( a ) : gcd ( b , a % b ) ;
2019-03-23 04:13:18 +00:00
2020-07-29 21:41:02 +00:00
// Computes lcm for two integers
2020-01-09 04:43:19 +00:00
function _lcm ( a , b ) =
2020-07-29 21:41:02 +00:00
assert ( is_int ( a ) && is_int ( b ) , "Invalid non-integer parameters to lcm" )
assert ( a ! = 0 && b ! = 0 , "Arguments to lcm must be non zero" )
2020-05-30 02:04:34 +00:00
abs ( a * b ) / gcd ( a , b ) ;
2017-08-30 00:00:16 +00:00
2020-01-09 04:43:19 +00:00
// Computes lcm for a list of values
function _lcmlist ( a ) =
2020-07-29 21:41:02 +00:00
len ( a ) = = 1
? a [ 0 ]
: _lcmlist ( concat ( slice ( a , 0 , len ( a ) - 2 ) , [ lcm ( a [ len ( a ) - 2 ] , a [ len ( a ) - 1 ] ) ] ) ) ;
2019-03-23 04:13:18 +00:00
2020-01-09 04:43:19 +00:00
// Function: lcm()
// Usage:
// lcm(a,b)
// lcm(list)
// Description:
// Computes the Least Common Multiple of the two arguments or a list of arguments. Inputs should
// be non-zero integers. The output is always a positive integer. It is an error to pass zero
// as an argument.
function lcm ( a , b = [ ] ) =
2020-07-29 21:41:02 +00:00
! is_list ( a ) && ! is_list ( b )
? _lcm ( a , b )
: let ( arglist = concat ( force_list ( a ) , force_list ( b ) ) )
assert ( len ( arglist ) > 0 , "Invalid call to lcm with empty list(s)" )
_lcmlist ( arglist ) ;
2019-03-23 04:13:18 +00:00
2020-01-09 04:43:19 +00:00
// Section: Sums, Products, Aggregate Functions.
2019-03-23 04:13:18 +00:00
// Function: sum()
// Description:
2020-07-29 21:41:02 +00:00
// Returns the sum of all entries in the given consistent list.
// If passed an array of vectors, returns the sum the vectors.
// If passed an array of matrices, returns the sum of the matrices.
2020-02-09 05:54:39 +00:00
// If passed an empty list, the value of `dflt` will be returned.
2019-03-23 04:13:18 +00:00
// Arguments:
2019-05-10 10:00:41 +00:00
// v = The list to get the sum of.
2020-02-09 05:54:39 +00:00
// dflt = The default value to return if `v` is an empty list. Default: 0
2019-03-23 04:13:18 +00:00
// Example:
// sum([1,2,3]); // returns 6.
// sum([[1,2,3], [3,4,5], [5,6,7]]); // returns [9, 12, 15]
2020-03-03 02:39:57 +00:00
function sum ( v , dflt = 0 ) =
2020-07-29 21:41:02 +00:00
is_list ( v ) && len ( v ) = = 0 ? dflt :
is_vector ( v ) || is_matrix ( v ) ? [ for ( i = v ) 1 ] * v :
2020-05-30 02:04:34 +00:00
assert ( is_consistent ( v ) , "Input to sum is non-numeric or inconsistent" )
2020-07-29 21:41:02 +00:00
_sum ( v , v [ 0 ] * 0 ) ;
2020-03-03 02:39:57 +00:00
function _sum ( v , _total , _i = 0 ) = _i >= len ( v ) ? _total : _sum ( v , _total + v [ _i ] , _i + 1 ) ;
2019-08-07 00:12:28 +00:00
// Function: cumsum()
// Description:
2020-07-29 14:30:57 +00:00
// Returns a list where each item is the cumulative sum of all items up to and including the corresponding entry in the input list.
// If passed an array of vectors, returns a list of cumulative vectors sums.
2019-08-07 00:12:28 +00:00
// Arguments:
2020-07-29 14:30:57 +00:00
// v = The list to get the sum of.
2019-08-07 00:12:28 +00:00
// Example:
// cumsum([1,1,1]); // returns [1,2,3]
// cumsum([2,2,2]); // returns [2,4,6]
// cumsum([1,2,3]); // returns [1,3,6]
// cumsum([[1,2,3], [3,4,5], [5,6,7]]); // returns [[1,2,3], [4,6,8], [9,12,15]]
2020-08-03 23:38:36 +00:00
function cumsum ( v ) =
assert ( is_consistent ( v ) , "The input is not consistent." )
_cumsum ( v , _i = 0 , _acc = [ ] ) ;
function _cumsum ( v , _i = 0 , _acc = [ ] ) =
2020-07-29 14:30:57 +00:00
_i = = len ( v ) ? _acc :
2020-08-03 23:38:36 +00:00
_cumsum (
2020-07-29 14:30:57 +00:00
v , _i + 1 ,
concat (
_acc ,
[ _i = = 0 ? v [ _i ] : select ( _acc , - 1 ) + v [ _i ] ]
)
) ;
2019-03-23 04:13:18 +00:00
2020-07-29 05:52:12 +00:00
2019-03-23 04:13:18 +00:00
// Function: sum_of_squares()
// Description:
// Returns the sum of the square of each element of a vector.
// Arguments:
// v = The vector to get the sum of.
// Example:
2019-10-23 00:09:08 +00:00
// sum_of_squares([1,2,3]); // Returns: 14.
// sum_of_squares([1,2,4]); // Returns: 21
// sum_of_squares([-3,-2,-1]); // Returns: 14
2020-07-07 01:50:50 +00:00
function sum_of_squares ( v ) = sum ( vmul ( v , v ) ) ;
2019-03-23 04:13:18 +00:00
// Function: sum_of_sines()
// Usage:
// sum_of_sines(a,sines)
// Description:
// Gives the sum of a series of sines, at a given angle.
// Arguments:
// a = Angle to get the value for.
// sines = List of [amplitude, frequency, offset] items, where the frequency is the number of times the cycle repeats around the circle.
2019-10-23 00:09:08 +00:00
// Examples:
// v = sum_of_sines(30, [[10,3,0], [5,5.5,60]]);
2019-03-23 04:13:18 +00:00
function sum_of_sines ( a , sines ) =
2020-07-29 21:41:02 +00:00
assert ( is_finite ( a ) && is_matrix ( sines , undef , 3 ) , "Invalid input." )
sum ( [ for ( s = sines )
let (
ss = point3d ( s ) ,
v = ss [ 0 ] * sin ( a * ss [ 1 ] + ss [ 2 ] )
) v
] ) ;
2019-03-23 04:13:18 +00:00
2019-05-10 10:00:41 +00:00
// Function: deltas()
// Description:
// Returns a list with the deltas of adjacent entries in the given list.
2020-07-29 21:41:02 +00:00
// The list should be a consistent list of numeric components (numbers, vectors, matrix, etc).
2019-05-10 10:00:41 +00:00
// Given [a,b,c,d], returns [b-a,c-b,d-c].
// Arguments:
// v = The list to get the deltas of.
// Example:
// deltas([2,5,9,17]); // returns [3,4,8].
// deltas([[1,2,3], [3,6,8], [4,8,11]]); // returns [[2,4,5], [1,2,3]]
2020-07-29 21:41:02 +00:00
function deltas ( v ) =
assert ( is_consistent ( v ) && len ( v ) > 1 , "Inconsistent list or with length<=1." )
[ for ( p = pair ( v ) ) p [ 1 ] - p [ 0 ] ] ;
2019-05-10 10:00:41 +00:00
2019-05-12 20:32:34 +00:00
// Function: product()
// Description:
// Returns the product of all entries in the given list.
2020-07-29 21:41:02 +00:00
// If passed a list of vectors of same dimension, returns a vector of products of each part.
2020-08-03 23:38:36 +00:00
// If passed a list of square matrices, returns the resulting product matrix.
2019-05-12 20:32:34 +00:00
// Arguments:
// v = The list to get the product of.
// Example:
// product([2,3,4]); // returns 24.
// product([[1,2,3], [3,4,5], [5,6,7]]); // returns [15, 48, 105]
2020-07-29 21:41:02 +00:00
function product ( v ) =
assert ( is_vector ( v ) || is_matrix ( v ) || ( is_matrix ( v [ 0 ] , square = true ) && is_consistent ( v ) ) ,
2020-08-03 23:38:36 +00:00
"Invalid input." )
2020-07-29 21:41:02 +00:00
_product ( v , 1 , v [ 0 ] ) ;
function _product ( v , i = 0 , _tot ) =
i >= len ( v ) ? _tot :
_product ( v ,
i + 1 ,
( is_vector ( v [ i ] ) ? vmul ( _tot , v [ i ] ) : _tot * v [ i ] ) ) ;
2019-05-12 20:32:34 +00:00
2020-07-11 16:22:59 +00:00
// Function: outer_product()
// Description:
// Compute the outer product of two vectors, a matrix.
// Usage:
// M = outer_product(u,v);
function outer_product ( u , v ) =
2020-07-29 21:41:02 +00:00
assert ( is_vector ( u ) && is_vector ( v ) , "The inputs must be vectors." )
[ for ( ui = u ) ui * v ] ;
2020-07-11 16:22:59 +00:00
2019-03-23 04:13:18 +00:00
// Function: mean()
// Description:
2020-07-29 21:41:02 +00:00
// Returns the arithmetic mean/average of all entries in the given array.
2020-03-17 08:13:47 +00:00
// If passed a list of vectors, returns a vector of the mean of each part.
2019-03-23 04:13:18 +00:00
// Arguments:
// v = The list of values to get the mean of.
// Example:
2019-04-04 07:37:21 +00:00
// mean([2,3,4]); // returns 3.
// mean([[1,2,3], [3,4,5], [5,6,7]]); // returns [3, 4, 5]
2020-07-29 21:41:02 +00:00
function mean ( v ) =
assert ( is_list ( v ) && len ( v ) > 0 , "Invalid list." )
sum ( v ) / len ( v ) ;
2019-03-23 04:13:18 +00:00
2020-07-29 21:41:02 +00:00
// Function: convolve()
// Usage:
// x = convolve(p,q);
// Description:
// Given two vectors, finds the convolution of them.
// The length of the returned vector is len(p)+len(q)-1 .
// Arguments:
// p = The first vector.
// q = The second vector.
// Example:
// a = convolve([1,1],[1,2,1]); // Returns: [1,3,3,1]
// b = convolve([1,2,3],[1,2,1])); // Returns: [1,4,8,8,3]
function convolve ( p , q ) =
p = = [ ] || q = = [ ] ? [ ] :
assert ( is_vector ( p ) && is_vector ( q ) , "The inputs should be vectors." )
let ( n = len ( p ) ,
m = len ( q ) )
[ for ( i = [ 0 : n + m - 2 ] , k1 = max ( 0 , i - n + 1 ) , k2 = min ( i , m - 1 ) )
[ for ( j = [ k1 : k2 ] ) p [ i - j ] ] * [ for ( j = [ k1 : k2 ] ) q [ j ] ]
] ;
2020-03-17 08:13:47 +00:00
2020-02-28 22:40:52 +00:00
// Section: Matrix math
2020-03-01 03:59:39 +00:00
// Function: linear_solve()
// Usage: linear_solve(A,b)
// Description:
// Solves the linear system Ax=b. If A is square and non-singular the unique solution is returned. If A is overdetermined
2020-08-16 22:38:17 +00:00
// the least squares solution is returned. If A is underdetermined, the minimal norm solution is returned.
2020-07-11 16:22:59 +00:00
// If A is rank deficient or singular then linear_solve returns []. If b is a matrix that is compatible with A
2020-03-17 11:11:25 +00:00
// then the problem is solved for the matrix valued right hand side and a matrix is returned. Note that if you
// want to solve Ax=b1 and Ax=b2 that you need to form the matrix transpose([b1,b2]) for the right hand side and then
// transpose the returned value.
2020-03-01 03:59:39 +00:00
function linear_solve ( A , b ) =
2020-07-29 21:41:02 +00:00
assert ( is_matrix ( A ) , "Input should be a matrix." )
2020-05-30 02:04:34 +00:00
let (
m = len ( A ) ,
n = len ( A [ 0 ] )
)
2020-08-16 22:38:17 +00:00
assert ( is_vector ( b , m ) || is_matrix ( b , m ) , "Invalid right hand side or incompatible with the matrix" )
2020-05-30 02:04:34 +00:00
let (
qr = m < n ? qr_factor ( transpose ( A ) ) : qr_factor ( A ) ,
maxdim = max ( n , m ) ,
mindim = min ( n , m ) ,
Q = submatrix ( qr [ 0 ] , [ 0 : maxdim - 1 ] , [ 0 : mindim - 1 ] ) ,
R = submatrix ( qr [ 1 ] , [ 0 : mindim - 1 ] , [ 0 : mindim - 1 ] ) ,
zeros = [ for ( i = [ 0 : mindim - 1 ] ) if ( approx ( R [ i ] [ i ] , 0 ) ) i ]
)
2020-07-11 16:22:59 +00:00
zeros ! = [ ] ? [ ] :
2020-08-03 23:38:36 +00:00
m < n
// avoiding input validation in back_substitute
2020-08-11 14:21:36 +00:00
? let ( n = len ( R ) )
Q * reverse ( _back_substitute ( transpose ( R , reverse = true ) , reverse ( b ) ) )
2020-08-03 23:38:36 +00:00
: _back_substitute ( R , transpose ( Q ) * b ) ;
2020-03-17 11:11:25 +00:00
// Function: matrix_inverse()
// Usage:
// matrix_inverse(A)
// Description:
// Compute the matrix inverse of the square matrix A. If A is singular, returns undef.
// Note that if you just want to solve a linear system of equations you should NOT
// use this function. Instead use linear_solve, or use qr_factor. The computation
// will be faster and more accurate.
function matrix_inverse ( A ) =
2020-05-30 02:04:34 +00:00
assert ( is_matrix ( A , square = true ) , "Input to matrix_inverse() must be a square matrix" )
linear_solve ( A , ident ( len ( A ) ) ) ;
2020-03-01 03:59:39 +00:00
2020-02-28 22:40:52 +00:00
// Function: qr_factor()
// Usage: qr = qr_factor(A)
// Description:
// Calculates the QR factorization of the input matrix A and returns it as the list [Q,R]. This factorization can be
// used to solve linear systems of equations.
function qr_factor ( A ) =
2020-07-29 21:41:02 +00:00
assert ( is_matrix ( A ) , "Input must be a matrix." )
2020-05-30 02:04:34 +00:00
let (
m = len ( A ) ,
n = len ( A [ 0 ] )
)
let (
2020-08-16 22:38:17 +00:00
qr = _qr_factor ( A , Q = ident ( m ) , column = 0 , m = m , n = n ) ,
2020-08-11 14:21:36 +00:00
Rzero =
let ( R = qr [ 1 ] )
[ for ( i = [ 0 : m - 1 ] ) [
let ( ri = R [ i ] )
for ( j = [ 0 : n - 1 ] ) i > j ? 0 : ri [ j ]
2020-05-30 02:04:34 +00:00
]
2020-08-11 14:21:36 +00:00
]
2020-05-30 02:04:34 +00:00
) [ qr [ 0 ] , Rzero ] ;
2020-02-28 22:40:52 +00:00
function _qr_factor ( A , Q , column , m , n ) =
2020-05-30 02:04:34 +00:00
column >= min ( m - 1 , n ) ? [ Q , A ] :
let (
x = [ for ( i = [ column : 1 : m - 1 ] ) A [ i ] [ column ] ] ,
alpha = ( x [ 0 ] < = 0 ? 1 : - 1 ) * norm ( x ) ,
u = x - concat ( [ alpha ] , repeat ( 0 , m - 1 ) ) ,
2020-07-07 01:50:50 +00:00
v = alpha = = 0 ? u : u / norm ( u ) ,
2020-07-11 16:22:59 +00:00
Qc = ident ( len ( x ) ) - 2 * outer_product ( v , v ) ,
2020-08-16 22:38:17 +00:00
Qf = [ for ( i = [ 0 : m - 1 ] )
[ for ( j = [ 0 : m - 1 ] )
i < column || j < column
? ( i = = j ? 1 : 0 )
: Qc [ i - column ] [ j - column ]
]
]
2020-05-30 02:04:34 +00:00
)
_qr_factor ( Qf * A , Q * Qf , column + 1 , m , n ) ;
2020-03-01 23:42:12 +00:00
2020-02-28 22:40:52 +00:00
// Function: back_substitute()
// Usage: back_substitute(R, b, [transpose])
// Description:
2020-07-29 21:41:02 +00:00
// Solves the problem Rx=b where R is an upper triangular square matrix. The lower triangular entries of R are
// ignored. If transpose==true then instead solve transpose(R)*x=b.
2020-03-17 11:11:25 +00:00
// You can supply a compatible matrix b and it will produce the solution for every column of b. Note that if you want to
2020-07-11 16:22:59 +00:00
// solve Rx=b1 and Rx=b2 you must set b to transpose([b1,b2]) and then take the transpose of the result. If the matrix
// is singular (e.g. has a zero on the diagonal) then it returns [].
2020-07-31 00:46:19 +00:00
function back_substitute ( R , b , transpose = false ) =
2020-05-30 02:04:34 +00:00
assert ( is_matrix ( R , square = true ) )
let ( n = len ( R ) )
2020-07-11 16:22:59 +00:00
assert ( is_vector ( b , n ) || is_matrix ( b , n ) , str ( "R and b are not compatible in back_substitute " , n , len ( b ) ) )
2020-07-31 00:46:19 +00:00
transpose
2020-08-11 14:21:36 +00:00
? reverse ( _back_substitute ( transpose ( R , reverse = true ) , reverse ( b ) ) )
2020-07-31 00:46:19 +00:00
: _back_substitute ( R , b ) ;
function _back_substitute ( R , b , x = [ ] ) =
2020-08-11 14:21:36 +00:00
let ( n = len ( R ) )
len ( x ) = = n ? x
2020-07-31 00:46:19 +00:00
: let ( ind = n - len ( x ) - 1 )
R [ ind ] [ ind ] = = 0 ? [ ]
: let (
newvalue = len ( x ) = = 0
? b [ ind ] / R [ ind ] [ ind ]
: ( b [ ind ] - select ( R [ ind ] , ind + 1 , - 1 ) * x ) / R [ ind ] [ ind ]
)
_back_substitute ( R , b , concat ( [ newvalue ] , x ) ) ;
2020-08-02 00:08:24 +00:00
2020-01-09 04:43:19 +00:00
2019-05-28 00:50:04 +00:00
// Function: det2()
// Description:
// Optimized function that returns the determinant for the given 2x2 square matrix.
// Arguments:
// M = The 2x2 square matrix to get the determinant of.
// Example:
// M = [ [6,-2], [1,8] ];
2019-09-19 09:42:42 +00:00
// det = det2(M); // Returns: 50
2020-07-29 21:41:02 +00:00
function det2 ( M ) =
2020-08-03 23:38:36 +00:00
assert ( 0 * M = = [ [ 0 , 0 ] , [ 0 , 0 ] ] , "Matrix should be 2x2." )
2020-07-29 21:41:02 +00:00
M [ 0 ] [ 0 ] * M [ 1 ] [ 1 ] - M [ 0 ] [ 1 ] * M [ 1 ] [ 0 ] ;
2019-05-28 00:50:04 +00:00
// Function: det3()
// Description:
// Optimized function that returns the determinant for the given 3x3 square matrix.
// Arguments:
// M = The 3x3 square matrix to get the determinant of.
// Example:
// M = [ [6,4,-2], [1,-2,8], [1,5,7] ];
// det = det3(M); // Returns: -334
function det3 ( M ) =
2020-08-03 23:38:36 +00:00
assert ( 0 * M = = [ [ 0 , 0 , 0 ] , [ 0 , 0 , 0 ] , [ 0 , 0 , 0 ] ] , "Matrix should be 3x3." )
2020-05-30 02:04:34 +00:00
M [ 0 ] [ 0 ] * ( M [ 1 ] [ 1 ] * M [ 2 ] [ 2 ] - M [ 2 ] [ 1 ] * M [ 1 ] [ 2 ] ) -
M [ 1 ] [ 0 ] * ( M [ 0 ] [ 1 ] * M [ 2 ] [ 2 ] - M [ 2 ] [ 1 ] * M [ 0 ] [ 2 ] ) +
M [ 2 ] [ 0 ] * ( M [ 0 ] [ 1 ] * M [ 1 ] [ 2 ] - M [ 1 ] [ 1 ] * M [ 0 ] [ 2 ] ) ;
2019-05-28 00:50:04 +00:00
// Function: determinant()
// Description:
// Returns the determinant for the given square matrix.
// Arguments:
// M = The NxN square matrix to get the determinant of.
// Example:
// M = [ [6,4,-2,9], [1,-2,8,3], [1,5,7,6], [4,2,5,1] ];
// det = determinant(M); // Returns: 2267
function determinant ( M ) =
2020-07-29 21:41:02 +00:00
assert ( is_matrix ( M , square = true ) , "Input should be a square matrix." )
2020-05-30 02:04:34 +00:00
len ( M ) = = 1 ? M [ 0 ] [ 0 ] :
len ( M ) = = 2 ? det2 ( M ) :
len ( M ) = = 3 ? det3 ( M ) :
sum (
[ for ( col = [ 0 : 1 : len ( M ) - 1 ] )
( ( col % 2 = = 0 ) ? 1 : - 1 ) *
2020-07-29 21:41:02 +00:00
M [ col ] [ 0 ] *
determinant (
[ for ( r = [ 1 : 1 : len ( M ) - 1 ] )
[ for ( c = [ 0 : 1 : len ( M ) - 1 ] )
if ( c ! = col ) M [ c ] [ r ]
]
2020-05-30 02:04:34 +00:00
]
2020-07-29 21:41:02 +00:00
)
2020-05-30 02:04:34 +00:00
]
) ;
2019-05-28 00:50:04 +00:00
2020-03-06 23:33:53 +00:00
// Function: is_matrix()
// Usage:
2020-03-17 11:11:25 +00:00
// is_matrix(A,[m],[n],[square])
2020-03-06 23:33:53 +00:00
// Description:
// Returns true if A is a numeric matrix of height m and width n. If m or n
// are omitted or set to undef then true is returned for any positive dimension.
2020-07-30 23:57:52 +00:00
// If `square` is true then the matrix is required to be square.
2020-03-17 11:11:25 +00:00
// specify m != n and require a square matrix then the result will always be false.
// Arguments:
// A = matrix to test
// m = optional height of matrix
// n = optional width of matrix
// square = set to true to require a square matrix. Default: false
2020-07-29 05:52:12 +00:00
function is_matrix ( A , m , n , square = false ) =
2020-08-03 23:08:23 +00:00
is_list ( A [ 0 ] )
2020-08-03 23:38:36 +00:00
&& ( let ( v = A * A [ 0 ] ) is_num ( 0 * ( v * v ) ) ) // a matrix of finite numbers
&& ( is_undef ( n ) || len ( A [ 0 ] ) = = n )
&& ( is_undef ( m ) || len ( A ) = = m )
&& ( ! square || len ( A ) = = len ( A [ 0 ] ) ) ;
2020-01-09 04:43:19 +00:00
2020-03-17 11:11:25 +00:00
2019-04-02 06:44:12 +00:00
// Section: Comparisons and Logic
2020-01-09 04:43:19 +00:00
// Function: approx()
// Usage:
// approx(a,b,[eps])
// Description:
// Compares two numbers or vectors, and returns true if they are closer than `eps` to each other.
// Arguments:
// a = First value.
// b = Second value.
// eps = The maximum allowed difference between `a` and `b` that will return true.
// Example:
// approx(-0.3333333333,-1/3); // Returns: true
// approx(0.3333333333,1/3); // Returns: true
// approx(0.3333,1/3); // Returns: false
// approx(0.3333,1/3,eps=1e-3); // Returns: true
// approx(PI,3.1415926536); // Returns: true
2020-07-29 21:41:02 +00:00
function approx ( a , b , eps = EPSILON ) =
2020-05-30 02:04:34 +00:00
a = = b ? true :
a * 0 ! = b * 0 ? false :
2020-07-29 21:41:02 +00:00
is_list ( a )
? ( [ for ( i = idx ( a ) ) if ( ! approx ( a [ i ] , b [ i ] , eps = eps ) ) 1 ] = = [ ] )
: is_num ( a ) && is_num ( b ) && ( abs ( a - b ) < = eps ) ;
2020-01-09 04:43:19 +00:00
2019-04-02 06:44:12 +00:00
2019-06-24 22:31:59 +00:00
function _type_num ( x ) =
2020-05-30 02:04:34 +00:00
is_undef ( x ) ? 0 :
is_bool ( x ) ? 1 :
is_num ( x ) ? 2 :
2020-06-21 02:51:58 +00:00
is_nan ( x ) ? 3 :
is_string ( x ) ? 4 :
is_list ( x ) ? 5 : 6 ;
2019-06-24 22:31:59 +00:00
2019-03-29 00:46:35 +00:00
// Function: compare_vals()
// Usage:
// compare_vals(a, b);
// Description:
2019-04-02 06:40:15 +00:00
// Compares two values. Lists are compared recursively.
2020-06-21 02:51:58 +00:00
// Returns <0 if a<b. Returns >0 if a>b. Returns 0 if a==b.
2020-07-29 21:41:02 +00:00
// If types are not the same, then undef < bool < nan < num < str < list < range.
2019-03-23 04:13:18 +00:00
// Arguments:
2019-03-29 00:46:35 +00:00
// a = First value to compare.
// b = Second value to compare.
2019-04-03 20:54:48 +00:00
function compare_vals ( a , b ) =
2020-05-30 02:04:34 +00:00
( a = = b ) ? 0 :
let ( t1 = _type_num ( a ) , t2 = _type_num ( b ) ) ( t1 ! = t2 ) ? ( t1 - t2 ) :
is_list ( a ) ? compare_lists ( a , b ) :
2020-06-21 02:51:58 +00:00
is_nan ( a ) ? 0 :
2020-05-30 02:04:34 +00:00
( a < b ) ? - 1 : ( a > b ) ? 1 : 0 ;
2019-03-29 00:46:35 +00:00
// Function: compare_lists()
// Usage:
// compare_lists(a, b)
// Description:
2019-06-24 22:31:59 +00:00
// Compare contents of two lists using `compare_vals()`.
2019-03-29 00:46:35 +00:00
// Returns <0 if `a`<`b`.
// Returns 0 if `a`==`b`.
2019-04-03 20:54:48 +00:00
// Returns >0 if `a`>`b`.
2019-03-29 00:46:35 +00:00
// Arguments:
// a = First list to compare.
// b = Second list to compare.
2019-06-24 22:31:59 +00:00
function compare_lists ( a , b ) =
2020-07-29 21:41:02 +00:00
a = = b ? 0
: let (
cmps = [ for ( i = [ 0 : 1 : min ( len ( a ) , len ( b ) ) - 1 ] )
let ( cmp = compare_vals ( a [ i ] , b [ i ] ) )
if ( cmp ! = 0 ) cmp
]
)
cmps = = [ ] ? ( len ( a ) - len ( b ) ) : cmps [ 0 ] ;
2019-03-23 04:13:18 +00:00
// Function: any()
2019-03-25 09:53:49 +00:00
// Description:
// Returns true if any item in list `l` evaluates as true.
// If `l` is a lists of lists, `any()` is applied recursively to each sublist.
2019-03-23 04:13:18 +00:00
// Arguments:
// l = The list to test for true items.
// Example:
// any([0,false,undef]); // Returns false.
// any([1,false,undef]); // Returns true.
// any([1,5,true]); // Returns true.
2019-03-25 09:53:49 +00:00
// any([[0,0], [0,0]]); // Returns false.
// any([[0,0], [1,0]]); // Returns true.
2020-08-03 23:38:36 +00:00
function any ( l ) =
assert ( is_list ( l ) , "The input is not a list." )
_any ( l , i = 0 , succ = false ) ;
function _any ( l , i = 0 , succ = false ) =
2020-05-30 02:04:34 +00:00
( i >= len ( l ) || succ ) ? succ :
2020-08-03 23:38:36 +00:00
_any ( l ,
2020-07-29 21:41:02 +00:00
i + 1 ,
2020-08-03 23:38:36 +00:00
succ = is_list ( l [ i ] ) ? _any ( l [ i ] ) : ! ( ! l [ i ] )
2020-07-29 21:41:02 +00:00
) ;
2019-03-23 04:13:18 +00:00
// Function: all()
2019-03-25 09:53:49 +00:00
// Description:
// Returns true if all items in list `l` evaluate as true.
// If `l` is a lists of lists, `all()` is applied recursively to each sublist.
2019-03-23 04:13:18 +00:00
// Arguments:
// l = The list to test for true items.
// Example:
// all([0,false,undef]); // Returns false.
// all([1,false,undef]); // Returns false.
// all([1,5,true]); // Returns true.
2019-03-25 09:53:49 +00:00
// all([[0,0], [0,0]]); // Returns false.
// all([[0,0], [1,0]]); // Returns false.
// all([[1,1], [1,1]]); // Returns true.
2019-03-29 00:46:35 +00:00
function all ( l , i = 0 , fail = false ) =
2020-08-03 23:38:36 +00:00
assert ( is_list ( l ) , "The input is not a list." )
_all ( l , i = 0 , fail = false ) ;
function _all ( l , i = 0 , fail = false ) =
2020-07-29 21:41:02 +00:00
( i >= len ( l ) || fail ) ? ! fail :
2020-08-03 23:38:36 +00:00
_all ( l ,
2020-07-29 21:41:02 +00:00
i + 1 ,
2020-08-03 23:38:36 +00:00
fail = is_list ( l [ i ] ) ? ! _all ( l [ i ] ) : ! l [ i ]
2020-07-29 21:41:02 +00:00
) ;
2019-03-29 00:46:35 +00:00
// Function: count_true()
// Usage:
// count_true(l)
// Description:
// Returns the number of items in `l` that evaluate as true.
// If `l` is a lists of lists, this is applied recursively to each
// sublist. Returns the total count of items that evaluate as true
// in all recursive sublists.
// Arguments:
// l = The list to test for true items.
// nmax = If given, stop counting if `nmax` items evaluate as true.
// Example:
// count_true([0,false,undef]); // Returns 0.
// count_true([1,false,undef]); // Returns 1.
// count_true([1,5,false]); // Returns 2.
// count_true([1,5,true]); // Returns 3.
// count_true([[0,0], [0,0]]); // Returns 0.
// count_true([[0,0], [1,0]]); // Returns 1.
// count_true([[1,1], [1,1]]); // Returns 4.
// count_true([[1,1], [1,1]], nmax=3); // Returns 3.
2020-07-29 21:41:02 +00:00
function count_true ( l , nmax ) =
! is_list ( l ) ? ! ( ! l ) ? 1 : 0 :
let ( c = [ for ( i = 0 ,
n = ! is_list ( l [ i ] ) ? ! ( ! l [ i ] ) ? 1 : 0 : undef ,
c = ! is_undef ( n ) ? n : count_true ( l [ i ] , nmax ) ,
s = c ;
i < len ( l ) && ( is_undef ( nmax ) || s < nmax ) ;
i = i + 1 ,
n = ! is_list ( l [ i ] ) ? ! ( ! l [ i ] ) ? 1 : 0 : undef ,
c = ! is_undef ( n ) || ( i = = len ( l ) ) ? n : count_true ( l [ i ] , nmax - s ) ,
s = s + c
) s ] )
len ( c ) < len ( l ) ? nmax : c [ len ( c ) - 1 ] ;
2020-03-01 23:42:12 +00:00
2020-02-27 22:32:03 +00:00
// Section: Calculus
2020-03-01 03:56:24 +00:00
// Function: deriv()
2020-02-27 22:32:03 +00:00
// Usage: deriv(data, [h], [closed])
// Description:
// Computes a numerical derivative estimate of the data, which may be scalar or vector valued.
// The `h` parameter gives the step size of your sampling so the derivative can be scaled correctly.
// If the `closed` parameter is true the data is assumed to be defined on a loop with data[0] adjacent to
// data[len(data)-1]. This function uses a symetric derivative approximation
// for internal points, f'(t) = (f(t+h)-f(t-h))/2h. For the endpoints (when closed=false) the algorithm
// uses a two point method if sufficient points are available: f'(t) = (3*(f(t+h)-f(t)) - (f(t+2*h)-f(t+h)))/2h.
2020-08-02 00:08:24 +00:00
// .
2020-06-14 02:35:22 +00:00
// If `h` is a vector then it is assumed to be nonuniform, with h[i] giving the sampling distance
// between data[i+1] and data[i], and the data values will be linearly resampled at each corner
// to produce a uniform spacing for the derivative estimate. At the endpoints a single point method
// is used: f'(t) = (f(t+h)-f(t))/h.
2020-07-29 21:41:02 +00:00
// Arguments:
// data = the list of the elements to compute the derivative of.
// h = the parametric sampling of the data.
// closed = boolean to indicate if the data set should be wrapped around from the end to the start.
2020-02-27 22:32:03 +00:00
function deriv ( data , h = 1 , closed = false ) =
2020-07-29 21:41:02 +00:00
assert ( is_consistent ( data ) , "Input list is not consistent or not numerical." )
assert ( len ( data ) >= 2 , "Input `data` should have at least 2 elements." )
assert ( is_finite ( h ) || is_vector ( h ) , "The sampling `h` must be a number or a list of numbers." )
assert ( is_num ( h ) || len ( h ) = = len ( data ) - ( closed ? 0 : 1 ) ,
str ( "Vector valued `h` must have length " , len ( data ) - ( closed ? 0 : 1 ) ) )
2020-06-14 02:35:22 +00:00
is_vector ( h ) ? _deriv_nonuniform ( data , h , closed = closed ) :
2020-05-30 02:04:34 +00:00
let ( L = len ( data ) )
2020-07-29 21:41:02 +00:00
closed
? [
2020-05-30 02:04:34 +00:00
for ( i = [ 0 : 1 : L - 1 ] )
( data [ ( i + 1 ) % L ] - data [ ( L + i - 1 ) % L ] ) / 2 / h
2020-07-29 21:41:02 +00:00
]
: let (
first = L < 3 ? data [ 1 ] - data [ 0 ] :
3 * ( data [ 1 ] - data [ 0 ] ) - ( data [ 2 ] - data [ 1 ] ) ,
last = L < 3 ? data [ L - 1 ] - data [ L - 2 ] :
( data [ L - 3 ] - data [ L - 2 ] ) - 3 * ( data [ L - 2 ] - data [ L - 1 ] )
)
[
2020-05-30 02:04:34 +00:00
first / 2 / h ,
for ( i = [ 1 : 1 : L - 2 ] ) ( data [ i + 1 ] - data [ i - 1 ] ) / 2 / h ,
last / 2 / h
2020-07-29 21:41:02 +00:00
] ;
2020-02-27 22:32:03 +00:00
2020-06-14 02:35:22 +00:00
function _dnu_calc ( f1 , fc , f2 , h1 , h2 ) =
let (
f1 = h2 < h1 ? lerp ( fc , f1 , h2 / h1 ) : f1 ,
f2 = h1 < h2 ? lerp ( fc , f2 , h1 / h2 ) : f2
2020-07-29 21:41:02 +00:00
)
( f2 - f1 ) / 2 / min ( h1 , h2 ) ;
2020-06-14 02:35:22 +00:00
function _deriv_nonuniform ( data , h , closed ) =
2020-07-29 21:41:02 +00:00
let ( L = len ( data ) )
closed
? [ for ( i = [ 0 : 1 : L - 1 ] )
_dnu_calc ( data [ ( L + i - 1 ) % L ] , data [ i ] , data [ ( i + 1 ) % L ] , select ( h , i - 1 ) , h [ i ] ) ]
2020-06-14 02:35:22 +00:00
: [
( data [ 1 ] - data [ 0 ] ) / h [ 0 ] ,
for ( i = [ 1 : 1 : L - 2 ] ) _dnu_calc ( data [ i - 1 ] , data [ i ] , data [ i + 1 ] , h [ i - 1 ] , h [ i ] ) ,
( data [ L - 1 ] - data [ L - 2 ] ) / h [ L - 2 ]
] ;
2020-03-01 03:56:24 +00:00
// Function: deriv2()
2020-02-27 22:32:03 +00:00
// Usage: deriv2(data, [h], [closed])
// Description:
2020-07-29 21:41:02 +00:00
// Computes a numerical estimate of the second derivative of the data, which may be scalar or vector valued.
2020-02-27 22:32:03 +00:00
// The `h` parameter gives the step size of your sampling so the derivative can be scaled correctly.
// If the `closed` parameter is true the data is assumed to be defined on a loop with data[0] adjacent to
// data[len(data)-1]. For internal points this function uses the approximation
2020-07-29 21:41:02 +00:00
// f''(t) = (f(t-h)-2*f(t)+f(t+h))/h^2. For the endpoints (when closed=false),
// when sufficient points are available, the method is either the four point expression
// f''(t) = (2*f(t) - 5*f(t+h) + 4*f(t+2*h) - f(t+3*h))/h^2 or
2020-02-27 22:32:03 +00:00
// f''(t) = (35*f(t) - 104*f(t+h) + 114*f(t+2*h) - 56*f(t+3*h) + 11*f(t+4*h)) / 12h^2
2020-07-29 21:41:02 +00:00
// if five points are available.
// Arguments:
// data = the list of the elements to compute the derivative of.
// h = the constant parametric sampling of the data.
// closed = boolean to indicate if the data set should be wrapped around from the end to the start.
2020-02-27 22:32:03 +00:00
function deriv2 ( data , h = 1 , closed = false ) =
2020-07-29 21:41:02 +00:00
assert ( is_consistent ( data ) , "Input list is not consistent or not numerical." )
assert ( is_finite ( h ) , "The sampling `h` must be a number." )
2020-05-30 02:04:34 +00:00
let ( L = len ( data ) )
2020-07-31 00:46:19 +00:00
assert ( L >= 3 , "Input list has less than 3 elements." )
closed
? [
2020-05-30 02:04:34 +00:00
for ( i = [ 0 : 1 : L - 1 ] )
( data [ ( i + 1 ) % L ] - 2 * data [ i ] + data [ ( L + i - 1 ) % L ] ) / h / h
2020-07-31 00:46:19 +00:00
]
:
2020-05-30 02:04:34 +00:00
let (
2020-07-31 00:46:19 +00:00
first =
2020-05-30 02:04:34 +00:00
L = = 3 ? data [ 0 ] - 2 * data [ 1 ] + data [ 2 ] :
L = = 4 ? 2 * data [ 0 ] - 5 * data [ 1 ] + 4 * data [ 2 ] - data [ 3 ] :
( 35 * data [ 0 ] - 104 * data [ 1 ] + 114 * data [ 2 ] - 56 * data [ 3 ] + 11 * data [ 4 ] ) / 12 ,
2020-07-31 00:46:19 +00:00
last =
2020-05-30 02:04:34 +00:00
L = = 3 ? data [ L - 1 ] - 2 * data [ L - 2 ] + data [ L - 3 ] :
L = = 4 ? - 2 * data [ L - 1 ] + 5 * data [ L - 2 ] - 4 * data [ L - 3 ] + data [ L - 4 ] :
( 35 * data [ L - 1 ] - 104 * data [ L - 2 ] + 114 * data [ L - 3 ] - 56 * data [ L - 4 ] + 11 * data [ L - 5 ] ) / 12
) [
first / h / h ,
for ( i = [ 1 : 1 : L - 2 ] ) ( data [ i + 1 ] - 2 * data [ i ] + data [ i - 1 ] ) / h / h ,
last / h / h
] ;
2020-02-27 22:32:03 +00:00
2020-03-01 03:56:24 +00:00
// Function: deriv3()
2020-02-27 22:32:03 +00:00
// Usage: deriv3(data, [h], [closed])
// Description:
// Computes a numerical third derivative estimate of the data, which may be scalar or vector valued.
// The `h` parameter gives the step size of your sampling so the derivative can be scaled correctly.
// If the `closed` parameter is true the data is assumed to be defined on a loop with data[0] adjacent to
2020-07-29 21:41:02 +00:00
// data[len(data)-1]. This function uses a five point derivative estimate, so the input data must include
// at least five points:
2020-02-27 22:32:03 +00:00
// f'''(t) = (-f(t-2*h)+2*f(t-h)-2*f(t+h)+f(t+2*h)) / 2h^3. At the first and second points from the end
// the estimates are f'''(t) = (-5*f(t)+18*f(t+h)-24*f(t+2*h)+14*f(t+3*h)-3*f(t+4*h)) / 2h^3 and
// f'''(t) = (-3*f(t-h)+10*f(t)-12*f(t+h)+6*f(t+2*h)-f(t+3*h)) / 2h^3.
function deriv3 ( data , h = 1 , closed = false ) =
2020-07-29 21:41:02 +00:00
assert ( is_consistent ( data ) , "Input list is not consistent or not numerical." )
assert ( len ( data ) >= 5 , "Input list has less than 5 elements." )
assert ( is_finite ( h ) , "The sampling `h` must be a number." )
2020-05-30 02:04:34 +00:00
let (
L = len ( data ) ,
h3 = h * h * h
)
closed ? [
for ( i = [ 0 : 1 : L - 1 ] )
( - data [ ( L + i - 2 ) % L ] + 2 * data [ ( L + i - 1 ) % L ] - 2 * data [ ( i + 1 ) % L ] + data [ ( i + 2 ) % L ] ) / 2 / h3
] :
let (
first = ( - 5 * data [ 0 ] + 18 * data [ 1 ] - 24 * data [ 2 ] + 14 * data [ 3 ] - 3 * data [ 4 ] ) / 2 ,
second = ( - 3 * data [ 0 ] + 10 * data [ 1 ] - 12 * data [ 2 ] + 6 * data [ 3 ] - data [ 4 ] ) / 2 ,
last = ( 5 * data [ L - 1 ] - 18 * data [ L - 2 ] + 24 * data [ L - 3 ] - 14 * data [ L - 4 ] + 3 * data [ L - 5 ] ) / 2 ,
prelast = ( 3 * data [ L - 1 ] - 10 * data [ L - 2 ] + 12 * data [ L - 3 ] - 6 * data [ L - 4 ] + data [ L - 5 ] ) / 2
) [
first / h3 ,
second / h3 ,
for ( i = [ 2 : 1 : L - 3 ] ) ( - data [ i - 2 ] + 2 * data [ i - 1 ] - 2 * data [ i + 1 ] + data [ i + 2 ] ) / 2 / h3 ,
prelast / h3 ,
last / h3
] ;
2020-06-18 21:50:25 +00:00
// Section: Complex Numbers
// Function: C_times()
// Usage: C_times(z1,z2)
// Description:
2020-07-29 21:41:02 +00:00
// Multiplies two complex numbers represented by 2D vectors.
function C_times ( z1 , z2 ) =
2020-08-26 13:14:26 +00:00
assert ( is_matrix ( [ z1 , z2 ] , 2 , 2 ) , "Complex numbers should be represented by 2D vectors" )
2020-07-29 21:41:02 +00:00
[ z1 . x * z2 . x - z1 . y * z2 . y , z1 . x * z2 . y + z1 . y * z2 . x ] ;
2020-06-18 21:50:25 +00:00
// Function: C_div()
// Usage: C_div(z1,z2)
// Description:
2020-07-29 21:41:02 +00:00
// Divides two complex numbers represented by 2D vectors.
function C_div ( z1 , z2 ) =
assert ( is_vector ( z1 , 2 ) && is_vector ( z2 ) , "Complex numbers should be represented by 2D vectors." )
assert ( ! approx ( z2 , 0 ) , "The divisor `z2` cannot be zero." )
let ( den = z2 . x * z2 . x + z2 . y * z2 . y )
[ ( z1 . x * z2 . x + z1 . y * z2 . y ) / den , ( z1 . y * z2 . x - z1 . x * z2 . y ) / den ] ;
2020-06-18 21:50:25 +00:00
2020-07-29 21:41:02 +00:00
// For the sake of consistence with Q_mul and vmul, C_times should be called C_mul
2020-06-18 21:50:25 +00:00
// Section: Polynomials
2020-07-29 21:41:02 +00:00
// Function: polynomial()
2020-06-18 21:50:25 +00:00
// Usage:
// polynomial(p, z)
// Description:
// Evaluates specified real polynomial, p, at the complex or real input value, z.
// The polynomial is specified as p=[a_n, a_{n-1},...,a_1,a_0]
// where a_n is the z^n coefficient. Polynomial coefficients are real.
2020-07-29 21:41:02 +00:00
// The result is a number if `z` is a number and a complex number otherwise.
function polynomial ( p , z , k , total ) =
2020-08-03 23:38:36 +00:00
is_undef ( k )
? assert ( is_vector ( p ) , "Input polynomial coefficients must be a vector." )
assert ( is_finite ( z ) || is_vector ( z , 2 ) , "The value of `z` must be a real or a complex number." )
polynomial ( _poly_trim ( p ) , z , 0 , is_num ( z ) ? 0 : [ 0 , 0 ] )
: k = = len ( p ) ? total
: polynomial ( p , z , k + 1 , is_num ( z ) ? total * z + p [ k ] : C_times ( total , z ) + [ p [ k ] , 0 ] ) ;
2020-06-18 21:50:25 +00:00
2020-07-11 16:22:59 +00:00
// Function: poly_mult()
2020-07-27 22:15:34 +00:00
// Usage:
2020-07-11 16:22:59 +00:00
// polymult(p,q)
// polymult([p1,p2,p3,...])
2020-07-29 21:41:02 +00:00
// Description:
2020-07-11 16:22:59 +00:00
// Given a list of polynomials represented as real coefficient lists, with the highest degree coefficient first,
// computes the coefficient list of the product polynomial.
2020-07-29 21:41:02 +00:00
function poly_mult ( p , q ) =
2020-08-03 23:38:36 +00:00
is_undef ( q ) ?
len ( p ) = = 2
? poly_mult ( p [ 0 ] , p [ 1 ] )
: poly_mult ( p [ 0 ] , poly_mult ( select ( p , 1 , - 1 ) ) )
:
assert ( is_vector ( p ) && is_vector ( q ) , "Invalid arguments to poly_mult" )
p * p = = 0 || q * q = = 0
? [ 0 ]
: _poly_trim ( convolve ( p , q ) ) ;
2020-07-29 21:41:02 +00:00
2020-07-11 16:22:59 +00:00
// Function: poly_div()
// Usage:
// [quotient,remainder] = poly_div(n,d)
// Description:
// Computes division of the numerator polynomial by the denominator polynomial and returns
// a list of two polynomials, [quotient, remainder]. If the division has no remainder then
2020-07-29 20:50:22 +00:00
// the zero polynomial [] is returned for the remainder. Similarly if the quotient is zero
// the returned quotient will be [].
2020-08-03 23:38:36 +00:00
function poly_div ( n , d ) =
assert ( is_vector ( n ) && is_vector ( d ) , "Invalid polynomials." )
let ( d = _poly_trim ( d ) ,
n = _poly_trim ( n ) )
assert ( d ! = [ 0 ] , "Denominator cannot be a zero polynomial." )
n = = [ 0 ]
? [ [ 0 ] , [ 0 ] ]
: _poly_div ( n , d , q = [ ] ) ;
function _poly_div ( n , d , q ) =
len ( n ) < len ( d ) ? [ q , _poly_trim ( n ) ] :
let (
t = n [ 0 ] / d [ 0 ] ,
newq = concat ( q , [ t ] ) ,
newn = [ for ( i = [ 1 : 1 : len ( n ) - 1 ] ) i < len ( d ) ? n [ i ] - t * d [ i ] : n [ i ] ]
)
_poly_div ( newn , d , newq ) ;
2020-07-11 16:22:59 +00:00
// Internal Function: _poly_trim()
// Usage:
// _poly_trim(p,[eps])
// Description:
// Removes leading zero terms of a polynomial. By default zeros must be exact,
// or give epsilon for approximate zeros.
function _poly_trim ( p , eps = 0 ) =
2020-07-29 21:41:02 +00:00
let ( nz = [ for ( i = [ 0 : 1 : len ( p ) - 1 ] ) if ( ! approx ( p [ i ] , 0 , eps ) ) i ] )
len ( nz ) = = 0 ? [ 0 ] : select ( p , nz [ 0 ] , - 1 ) ;
2020-07-11 16:22:59 +00:00
// Function: poly_add()
// Usage:
// sum = poly_add(p,q)
// Description:
// Computes the sum of two polynomials.
function poly_add ( p , q ) =
2020-07-29 21:41:02 +00:00
assert ( is_vector ( p ) && is_vector ( q ) , "Invalid input polynomial(s)." )
let ( plen = len ( p ) ,
qlen = len ( q ) ,
long = plen > qlen ? p : q ,
short = plen > qlen ? q : p
)
_poly_trim ( long + concat ( repeat ( 0 , len ( long ) - len ( short ) ) , short ) ) ;
2020-07-11 16:22:59 +00:00
2020-06-18 21:50:25 +00:00
// Function: poly_roots()
// Usage:
// poly_roots(p,[tol])
// Description:
// Returns all complex roots of the specified real polynomial p.
// The polynomial is specified as p=[a_n, a_{n-1},...,a_1,a_0]
// where a_n is the z^n coefficient. The tol parameter gives
// the stopping tolerance for the iteration. The polynomial
// must have at least one non-zero coefficient. Convergence is poor
// if the polynomial has any repeated roots other than zero.
// Arguments:
// p = polynomial coefficients with higest power coefficient first
// tol = tolerance for iteration. Default: 1e-14
// Uses the Aberth method https://en.wikipedia.org/wiki/Aberth_method
//
// Dario Bini. "Numerical computation of polynomial zeros by means of Aberth's Method", Numerical Algorithms, Feb 1996.
// https://www.researchgate.net/publication/225654837_Numerical_computation_of_polynomial_zeros_by_means_of_Aberth's_method
2020-07-11 16:22:59 +00:00
function poly_roots ( p , tol = 1e-14 , error_bound = false ) =
2020-07-29 21:41:02 +00:00
assert ( is_vector ( p ) , "Invalid polynomial." )
let ( p = _poly_trim ( p , eps = 0 ) )
assert ( p ! = [ 0 ] , "Input polynomial cannot be zero." )
p [ len ( p ) - 1 ] = = 0 ? // Strip trailing zero coefficients
let ( solutions = poly_roots ( select ( p , 0 , - 2 ) , tol = tol , error_bound = error_bound ) )
( error_bound ? [ [ [ 0 , 0 ] , each solutions [ 0 ] ] , [ 0 , each solutions [ 1 ] ] ]
: [ [ 0 , 0 ] , each solutions ] ) :
len ( p ) = = 1 ? ( error_bound ? [ [ ] , [ ] ] : [ ] ) : // Nonzero constant case has no solutions
len ( p ) = = 2 ? let ( solution = [ [ - p [ 1 ] / p [ 0 ] , 0 ] ] ) // Linear case needs special handling
( error_bound ? [ solution , [ 0 ] ] : solution )
:
let (
n = len ( p ) - 1 , // polynomial degree
pderiv = [ for ( i = [ 0 : n - 1 ] ) p [ i ] * ( n - i ) ] ,
s = [ for ( i = [ 0 : 1 : n ] ) abs ( p [ i ] ) * ( 4 * ( n - i ) + 1 ) ] , // Error bound polynomial from Bini
// Using method from: http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/0915-24.pdf
beta = - p [ 1 ] / p [ 0 ] / n ,
r = 1 + pow ( abs ( polynomial ( p , beta ) / p [ 0 ] ) , 1 / n ) ,
init = [ for ( i = [ 0 : 1 : n - 1 ] ) // Initial guess for roots
let ( angle = 360 * i / n + 270 / n / PI )
[ beta , 0 ] + r * [ cos ( angle ) , sin ( angle ) ]
] ,
roots = _poly_roots ( p , pderiv , s , init , tol = tol ) ,
error = error_bound ? [ for ( xi = roots ) n * ( norm ( polynomial ( p , xi ) ) + tol * polynomial ( s , norm ( xi ) ) ) /
abs ( norm ( polynomial ( pderiv , xi ) ) - tol * polynomial ( s , norm ( xi ) ) ) ] : 0
)
error_bound ? [ roots , error ] : roots ;
// Internal function
2020-06-18 21:50:25 +00:00
// p = polynomial
// pderiv = derivative polynomial of p
// z = current guess for the roots
// tol = root tolerance
// i=iteration counter
function _poly_roots ( p , pderiv , s , z , tol , i = 0 ) =
assert ( i < 45 , str ( "Polyroot exceeded iteration limit. Current solution:" , z ) )
let (
n = len ( z ) ,
svals = [ for ( zk = z ) tol * polynomial ( s , norm ( zk ) ) ] ,
p_of_z = [ for ( zk = z ) polynomial ( p , zk ) ] ,
done = [ for ( k = [ 0 : n - 1 ] ) norm ( p_of_z [ k ] ) < = svals [ k ] ] ,
newton = [ for ( k = [ 0 : n - 1 ] ) C_div ( p_of_z [ k ] , polynomial ( pderiv , z [ k ] ) ) ] ,
zdiff = [ for ( k = [ 0 : n - 1 ] ) sum ( [ for ( j = [ 0 : n - 1 ] ) if ( j ! = k ) C_div ( [ 1 , 0 ] , z [ k ] - z [ j ] ) ] ) ] ,
w = [ for ( k = [ 0 : n - 1 ] ) done [ k ] ? [ 0 , 0 ] : C_div ( newton [ k ] ,
[ 1 , 0 ] - C_times ( newton [ k ] , zdiff [ k ] ) ) ]
)
all ( done ) ? z : _poly_roots ( p , pderiv , s , z - w , tol , i + 1 ) ;
// Function: real_roots()
// Usage:
// real_roots(p, [eps], [tol])
// Description:
// Returns the real roots of the specified real polynomial p.
// The polynomial is specified as p=[a_n, a_{n-1},...,a_1,a_0]
// where a_n is the x^n coefficient. This function works by
// computing the complex roots and returning those roots where
2020-07-11 16:22:59 +00:00
// the imaginary part is closed to zero. By default it uses a computed
// error bound from the polynomial solver to decide whether imaginary
// parts are zero. You can specify eps, in which case the test is
// z.y/(1+norm(z)) < eps. Because
2020-06-18 21:50:25 +00:00
// of poor convergence and higher error for repeated roots, such roots may
// be missed by the algorithm because their imaginary part is large.
// Arguments:
// p = polynomial to solve as coefficient list, highest power term first
// eps = used to determine whether imaginary parts of roots are zero
// tol = tolerance for the complex polynomial root finder
2020-07-11 16:22:59 +00:00
function real_roots ( p , eps = undef , tol = 1e-14 ) =
2020-07-29 21:41:02 +00:00
assert ( is_vector ( p ) , "Invalid polynomial." )
let ( p = _poly_trim ( p , eps = 0 ) )
assert ( p ! = [ 0 ] , "Input polynomial cannot be zero." )
let (
2020-07-11 16:22:59 +00:00
roots_err = poly_roots ( p , error_bound = true ) ,
roots = roots_err [ 0 ] ,
err = roots_err [ 1 ]
2020-07-29 21:41:02 +00:00
)
is_def ( eps )
? [ for ( z = roots ) if ( abs ( z . y ) / ( 1 + norm ( z ) ) < eps ) z . x ]
: [ for ( i = idx ( roots ) ) if ( abs ( roots [ i ] . y ) < = err [ i ] ) roots [ i ] . x ] ;
2020-05-30 02:04:34 +00:00
2020-08-03 23:38:36 +00:00
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap