2017-08-30 00:00:16 +00:00
//////////////////////////////////////////////////////////////////////
2019-03-23 04:13:18 +00:00
// LibFile: math.scad
// Math helper functions.
2021-01-05 09:20:01 +00:00
// Includes:
// include <BOSL2/std.scad>
2017-08-30 00:00:16 +00:00
//////////////////////////////////////////////////////////////////////
2019-03-28 09:26:16 +00:00
2019-04-12 07:08:56 +00:00
// Section: Math Constants
2021-02-20 03:56:43 +00:00
// Constant: PHI
// Description: The golden ratio phi.
PHI = ( 1 + sqrt ( 5 ) ) / 2 ;
2019-04-12 07:08:56 +00:00
2021-02-20 03:56:43 +00:00
// Constant: EPSILON
// Description: A really small value useful in comparing floating point numbers. ie: abs(a-b)<EPSILON
EPSILON = 1e-9 ;
2019-04-16 22:34:54 +00:00
2021-02-20 03:56:43 +00:00
// Constant: INF
// Description: The value `inf`, useful for comparisons.
INF = 1 / 0 ;
2020-02-07 06:51:16 +00:00
2021-02-20 03:56:43 +00:00
// Constant: NAN
// Description: The value `nan`, useful for comparisons.
NAN = acos ( 2 ) ;
2020-02-07 06:51:16 +00:00
2019-04-12 07:08:56 +00:00
2020-01-09 04:43:19 +00:00
// Section: Simple math
// Function: sqr()
// Usage:
2021-07-02 10:30:13 +00:00
// x2 = sqr(x);
2020-01-09 04:43:19 +00:00
// Description:
2020-09-25 07:31:42 +00:00
// If given a number, returns the square of that number,
2021-03-30 23:44:47 +00:00
// If given a vector, returns the sum-of-squares/dot product of the vector elements.
2020-09-25 07:31:42 +00:00
// If given a matrix, returns the matrix multiplication of the matrix with itself.
2021-09-16 23:33:55 +00:00
// Example:
2020-03-21 13:19:49 +00:00
// sqr(3); // Returns: 9
// sqr(-4); // Returns: 16
2020-09-28 23:52:17 +00:00
// sqr([2,3,4]); // Returns: 29
2020-09-25 07:31:42 +00:00
// sqr([[1,2],[3,4]]); // Returns [[7,10],[15,22]]
2020-07-29 21:41:02 +00:00
function sqr ( x ) =
2020-09-28 23:52:17 +00:00
assert ( is_finite ( x ) || is_vector ( x ) || is_matrix ( x ) , "Input is not a number nor a list of numbers." )
x * x ;
2020-01-09 04:43:19 +00:00
// Function: log2()
// Usage:
// foo = log2(x);
// Description:
// Returns the logarithm base 2 of the value given.
2021-09-16 23:33:55 +00:00
// Example:
2020-01-09 04:43:19 +00:00
// log2(0.125); // Returns: -3
// log2(16); // Returns: 4
// log2(256); // Returns: 8
2020-07-29 21:41:02 +00:00
function log2 ( x ) =
assert ( is_finite ( x ) , "Input is not a number." )
ln ( x ) / ln ( 2 ) ;
2020-01-09 04:43:19 +00:00
2020-07-29 21:41:02 +00:00
// this may return NAN or INF; should it check x>0 ?
2020-01-09 04:43:19 +00:00
// Function: hypot()
// Usage:
2021-07-02 10:30:13 +00:00
// l = hypot(x, y, [z]);
2020-01-09 04:43:19 +00:00
// Description:
2021-03-30 23:44:47 +00:00
// Calculate hypotenuse length of a 2D or 3D triangle.
2020-01-09 04:43:19 +00:00
// Arguments:
// x = Length on the X axis.
// y = Length on the Y axis.
// z = Length on the Z axis. Optional.
// Example:
// l = hypot(3,4); // Returns: 5
// l = hypot(3,4,5); // Returns: ~7.0710678119
2020-07-29 21:41:02 +00:00
function hypot ( x , y , z = 0 ) =
assert ( is_vector ( [ x , y , z ] ) , "Improper number(s)." )
norm ( [ x , y , z ] ) ;
2020-01-09 04:43:19 +00:00
// Function: factorial()
// Usage:
2021-07-02 10:30:13 +00:00
// x = factorial(n, [d]);
2020-01-09 04:43:19 +00:00
// Description:
2020-07-11 16:22:59 +00:00
// Returns the factorial of the given integer value, or n!/d! if d is given.
2020-01-09 04:43:19 +00:00
// Arguments:
// n = The integer number to get the factorial of. (n!)
// d = If given, the returned value will be (n! / d!)
// Example:
// x = factorial(4); // Returns: 24
// y = factorial(6); // Returns: 720
// z = factorial(9); // Returns: 362880
2020-07-11 16:22:59 +00:00
function factorial ( n , d = 0 ) =
2020-08-03 23:38:36 +00:00
assert ( is_int ( n ) && is_int ( d ) && n >= 0 && d >= 0 , "Factorial is defined only for non negative integers" )
2020-07-11 16:22:59 +00:00
assert ( d < = n , "d cannot be larger than n" )
product ( [ 1 , for ( i = [ n : - 1 : d + 1 ] ) i ] ) ;
2020-01-09 04:43:19 +00:00
2020-07-29 21:41:02 +00:00
// Function: binomial()
// Usage:
// x = binomial(n);
// Description:
// Returns the binomial coefficients of the integer `n`.
// Arguments:
// n = The integer to get the binomial coefficients of
// Example:
// x = binomial(3); // Returns: [1,3,3,1]
// y = binomial(4); // Returns: [1,4,6,4,1]
// z = binomial(6); // Returns: [1,6,15,20,15,6,1]
function binomial ( n ) =
assert ( is_int ( n ) && n > 0 , "Input is not an integer greater than 0." )
[ for ( c = 1 , i = 0 ;
i < = n ;
c = c * ( n - i ) / ( i + 1 ) , i = i + 1
) c ] ;
// Function: binomial_coefficient()
// Usage:
2021-07-02 10:30:13 +00:00
// x = binomial_coefficient(n, k);
2020-07-29 21:41:02 +00:00
// Description:
// Returns the k-th binomial coefficient of the integer `n`.
// Arguments:
// n = The integer to get the binomial coefficient of
// k = The binomial coefficient index
// Example:
// x = binomial_coefficient(3,2); // Returns: 3
// y = binomial_coefficient(10,6); // Returns: 210
function binomial_coefficient ( n , k ) =
assert ( is_int ( n ) && is_int ( k ) , "Some input is not a number." )
k < 0 || k > n ? 0 :
k = = 0 || k = = n ? 1 :
let ( k = min ( k , n - k ) ,
b = [ for ( c = 1 , i = 0 ;
i < = k ;
c = c * ( n - i ) / ( i + 1 ) , i = i + 1
) c ] )
b [ len ( b ) - 1 ] ;
2020-01-09 04:43:19 +00:00
// Function: lerp()
// Usage:
// x = lerp(a, b, u);
// l = lerp(a, b, LIST);
// Description:
// Interpolate between two values or vectors.
// If `u` is given as a number, returns the single interpolated value.
// If `u` is 0.0, then the value of `a` is returned.
// If `u` is 1.0, then the value of `b` is returned.
// If `u` is a range, or list of numbers, returns a list of interpolated values.
2020-07-29 21:41:02 +00:00
// It is valid to use a `u` value outside the range 0 to 1. The result will be an extrapolation
// along the slope formed by `a` and `b`.
2020-01-09 04:43:19 +00:00
// Arguments:
// a = First value or vector.
// b = Second value or vector.
// u = The proportion from `a` to `b` to calculate. Standard range is 0.0 to 1.0, inclusive. If given as a list or range of values, returns a list of results.
// Example:
// x = lerp(0,20,0.3); // Returns: 6
// x = lerp(0,20,0.8); // Returns: 16
// x = lerp(0,20,-0.1); // Returns: -2
// x = lerp(0,20,1.1); // Returns: 22
// p = lerp([0,0],[20,10],0.25); // Returns [5,2.5]
// l = lerp(0,20,[0.4,0.6]); // Returns: [8,12]
// l = lerp(0,20,[0.25:0.25:0.75]); // Returns: [5,10,15]
// Example(2D):
// p1 = [-50,-20]; p2 = [50,30];
// stroke([p1,p2]);
// pts = lerp(p1, p2, [0:1/8:1]);
// // Points colored in ROYGBIV order.
// rainbow(pts) translate($item) circle(d=3,$fn=8);
function lerp ( a , b , u ) =
2020-05-30 02:04:34 +00:00
assert ( same_shape ( a , b ) , "Bad or inconsistent inputs to lerp" )
2020-07-29 21:41:02 +00:00
is_finite ( u ) ? ( 1 - u ) * a + u * b :
2020-08-03 23:38:36 +00:00
assert ( is_finite ( u ) || is_vector ( u ) || valid_range ( u ) , "Input u to lerp must be a number, vector, or valid range." )
2020-07-29 21:41:02 +00:00
[ for ( v = u ) ( 1 - v ) * a + v * b ] ;
2020-01-09 04:43:19 +00:00
2021-04-06 23:59:56 +00:00
// Function: lerpn()
// Usage:
// x = lerpn(a, b, n);
2021-06-27 03:59:33 +00:00
// x = lerpn(a, b, n, [endpoint]);
2021-04-06 23:59:56 +00:00
// Description:
// Returns exactly `n` values, linearly interpolated between `a` and `b`.
// If `endpoint` is true, then the last value will exactly equal `b`.
// If `endpoint` is false, then the last value will about `a+(b-a)*(1-1/n)`.
// Arguments:
// a = First value or vector.
// b = Second value or vector.
// n = The number of values to return.
// endpoint = If true, the last value will be exactly `b`. If false, the last value will be one step less.
2021-09-16 23:33:55 +00:00
// Example:
2021-04-06 23:59:56 +00:00
// l = lerpn(-4,4,9); // Returns: [-4,-3,-2,-1,0,1,2,3,4]
// l = lerpn(-4,4,8,false); // Returns: [-4,-3,-2,-1,0,1,2,3]
// l = lerpn(0,1,6); // Returns: [0, 0.2, 0.4, 0.6, 0.8, 1]
// l = lerpn(0,1,5,false); // Returns: [0, 0.2, 0.4, 0.6, 0.8]
function lerpn ( a , b , n , endpoint = true ) =
assert ( same_shape ( a , b ) , "Bad or inconsistent inputs to lerp" )
assert ( is_int ( n ) )
assert ( is_bool ( endpoint ) )
let ( d = n - ( endpoint ? 1 : 0 ) )
[ for ( i = [ 0 : 1 : n - 1 ] ) let ( u = i / d ) ( 1 - u ) * a + u * b ] ;
2020-07-29 05:52:12 +00:00
2020-12-10 07:43:08 +00:00
// Section: Undef Safe Math
// Function: u_add()
// Usage:
// x = u_add(a, b);
// Description:
// Adds `a` to `b`, returning the result, or undef if either value is `undef`.
// This emulates the way undefs used to be handled in versions of OpenSCAD before 2020.
// Arguments:
// a = First value.
// b = Second value.
function u_add ( a , b ) = is_undef ( a ) || is_undef ( b ) ? undef : a + b ;
// Function: u_sub()
// Usage:
// x = u_sub(a, b);
// Description:
// Subtracts `b` from `a`, returning the result, or undef if either value is `undef`.
// This emulates the way undefs used to be handled in versions of OpenSCAD before 2020.
// Arguments:
// a = First value.
// b = Second value.
function u_sub ( a , b ) = is_undef ( a ) || is_undef ( b ) ? undef : a - b ;
// Function: u_mul()
// Usage:
// x = u_mul(a, b);
// Description:
// Multiplies `a` by `b`, returning the result, or undef if either value is `undef`.
// This emulates the way undefs used to be handled in versions of OpenSCAD before 2020.
// Arguments:
// a = First value.
// b = Second value.
function u_mul ( a , b ) =
is_undef ( a ) || is_undef ( b ) ? undef :
2021-06-15 03:28:49 +00:00
is_vector ( a ) && is_vector ( b ) ? v_mul ( a , b ) :
2020-12-10 07:43:08 +00:00
a * b ;
// Function: u_div()
// Usage:
// x = u_div(a, b);
// Description:
// Divides `a` by `b`, returning the result, or undef if either value is `undef`.
// This emulates the way undefs used to be handled in versions of OpenSCAD before 2020.
// Arguments:
// a = First value.
// b = Second value.
function u_div ( a , b ) =
is_undef ( a ) || is_undef ( b ) ? undef :
2021-06-15 03:28:49 +00:00
is_vector ( a ) && is_vector ( b ) ? v_div ( a , b ) :
2020-12-10 07:43:08 +00:00
a / b ;
2020-01-09 04:43:19 +00:00
// Section: Hyperbolic Trigonometry
// Function: sinh()
// Description: Takes a value `x`, and returns the hyperbolic sine of it.
function sinh ( x ) =
2020-07-29 21:41:02 +00:00
assert ( is_finite ( x ) , "The input must be a finite number." )
2020-05-30 02:04:34 +00:00
( exp ( x ) - exp ( - x ) ) / 2 ;
2020-01-09 04:43:19 +00:00
// Function: cosh()
// Description: Takes a value `x`, and returns the hyperbolic cosine of it.
function cosh ( x ) =
2020-07-29 21:41:02 +00:00
assert ( is_finite ( x ) , "The input must be a finite number." )
2020-05-30 02:04:34 +00:00
( exp ( x ) + exp ( - x ) ) / 2 ;
2020-01-09 04:43:19 +00:00
// Function: tanh()
// Description: Takes a value `x`, and returns the hyperbolic tangent of it.
function tanh ( x ) =
2020-07-29 21:41:02 +00:00
assert ( is_finite ( x ) , "The input must be a finite number." )
2020-05-30 02:04:34 +00:00
sinh ( x ) / cosh ( x ) ;
2020-01-09 04:43:19 +00:00
// Function: asinh()
// Description: Takes a value `x`, and returns the inverse hyperbolic sine of it.
function asinh ( x ) =
2020-07-29 21:41:02 +00:00
assert ( is_finite ( x ) , "The input must be a finite number." )
2020-05-30 02:04:34 +00:00
ln ( x + sqrt ( x * x + 1 ) ) ;
2020-01-09 04:43:19 +00:00
// Function: acosh()
// Description: Takes a value `x`, and returns the inverse hyperbolic cosine of it.
function acosh ( x ) =
2020-07-29 21:41:02 +00:00
assert ( is_finite ( x ) , "The input must be a finite number." )
2020-05-30 02:04:34 +00:00
ln ( x + sqrt ( x * x - 1 ) ) ;
2020-01-09 04:43:19 +00:00
// Function: atanh()
// Description: Takes a value `x`, and returns the inverse hyperbolic tangent of it.
function atanh ( x ) =
2020-07-29 21:41:02 +00:00
assert ( is_finite ( x ) , "The input must be a finite number." )
2020-05-30 02:04:34 +00:00
ln ( ( 1 + x ) / ( 1 - x ) ) / 2 ;
2020-01-09 04:43:19 +00:00
// Section: Quantization
2019-03-23 04:13:18 +00:00
// Function: quant()
2021-07-02 10:30:13 +00:00
// Usage:
// num = quant(x, y);
2019-03-23 04:13:18 +00:00
// Description:
// Quantize a value `x` to an integer multiple of `y`, rounding to the nearest multiple.
2021-07-08 06:28:07 +00:00
// The value of `y` does NOT have to be an integer. If `x` is a list, then every item
// in that list will be recursively quantized.
2019-03-23 04:13:18 +00:00
// Arguments:
// x = The value to quantize.
2021-07-02 10:30:13 +00:00
// y = The non-zero integer quantum of the quantization.
2019-10-23 00:09:08 +00:00
// Example:
2021-07-02 10:30:13 +00:00
// a = quant(12,4); // Returns: 12
// b = quant(13,4); // Returns: 12
// c = quant(13.1,4); // Returns: 12
// d = quant(14,4); // Returns: 16
// e = quant(14.1,4); // Returns: 16
// f = quant(15,4); // Returns: 16
// g = quant(16,4); // Returns: 16
// h = quant(9,3); // Returns: 9
// i = quant(10,3); // Returns: 9
// j = quant(10.4,3); // Returns: 9
// k = quant(10.5,3); // Returns: 12
// l = quant(11,3); // Returns: 12
// m = quant(12,3); // Returns: 12
2021-07-08 06:28:07 +00:00
// n = quant(11,2.5); // Returns: 10
// o = quant(12,2.5); // Returns: 12.5
// p = quant([12,13,13.1,14,14.1,15,16],4); // Returns: [12,12,12,16,16,16,16]
// q = quant([9,10,10.4,10.5,11,12],3); // Returns: [9,9,9,12,12,12]
// r = quant([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,9,9],[12,12,12]]
2019-08-24 18:51:24 +00:00
function quant ( x , y ) =
2021-07-07 05:37:51 +00:00
assert ( is_finite ( y ) && y > 0 , "The quantum `y` must be a non zero integer." )
2020-07-29 21:41:02 +00:00
is_list ( x )
? [ for ( v = x ) quant ( v , y ) ]
2021-07-02 10:30:13 +00:00
: assert ( is_finite ( x ) , "The input to quantize is not a number nor a list of numbers." )
2020-07-29 21:41:02 +00:00
floor ( x / y + 0.5 ) * y ;
2017-08-30 00:00:16 +00:00
2020-07-29 05:52:12 +00:00
2019-03-23 04:13:18 +00:00
// Function: quantdn()
2021-07-02 10:30:13 +00:00
// Usage:
// num = quantdn(x, y);
2019-03-23 04:13:18 +00:00
// Description:
// Quantize a value `x` to an integer multiple of `y`, rounding down to the previous multiple.
2021-07-08 06:28:07 +00:00
// The value of `y` does NOT have to be an integer. If `x` is a list, then every item in that
// list will be recursively quantized down.
2019-03-23 04:13:18 +00:00
// Arguments:
// x = The value to quantize.
2021-07-02 10:30:13 +00:00
// y = The non-zero integer quantum of the quantization.
2021-09-16 23:33:55 +00:00
// Example:
2021-07-02 10:30:13 +00:00
// a = quantdn(12,4); // Returns: 12
// b = quantdn(13,4); // Returns: 12
// c = quantdn(13.1,4); // Returns: 12
// d = quantdn(14,4); // Returns: 12
// e = quantdn(14.1,4); // Returns: 12
// f = quantdn(15,4); // Returns: 12
// g = quantdn(16,4); // Returns: 16
// h = quantdn(9,3); // Returns: 9
// i = quantdn(10,3); // Returns: 9
// j = quantdn(10.4,3); // Returns: 9
// k = quantdn(10.5,3); // Returns: 9
// l = quantdn(11,3); // Returns: 9
// m = quantdn(12,3); // Returns: 12
2021-07-08 06:28:07 +00:00
// n = quantdn(11,2.5); // Returns: 10
// o = quantdn(12,2.5); // Returns: 10
// p = quantdn([12,13,13.1,14,14.1,15,16],4); // Returns: [12,12,12,12,12,12,16]
// q = quantdn([9,10,10.4,10.5,11,12],3); // Returns: [9,9,9,9,9,12]
// r = quantdn([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,9,9],[9,9,12]]
2019-08-24 18:51:24 +00:00
function quantdn ( x , y ) =
2021-07-07 05:37:51 +00:00
assert ( is_finite ( y ) && y > 0 , "The quantum `y` must be a non zero integer." )
2020-07-29 21:41:02 +00:00
is_list ( x )
2021-07-02 10:30:13 +00:00
? [ for ( v = x ) quantdn ( v , y ) ]
: assert ( is_finite ( x ) , "The input to quantize must be a number or a list of numbers." )
2020-07-29 21:41:02 +00:00
floor ( x / y ) * y ;
2017-08-30 00:00:16 +00:00
2019-03-23 04:13:18 +00:00
// Function: quantup()
2021-07-02 10:30:13 +00:00
// Usage:
// num = quantup(x, y);
2019-03-23 04:13:18 +00:00
// Description:
// Quantize a value `x` to an integer multiple of `y`, rounding up to the next multiple.
2021-07-08 06:28:07 +00:00
// The value of `y` does NOT have to be an integer. If `x` is a list, then every item in
// that list will be recursively quantized up.
2019-03-23 04:13:18 +00:00
// Arguments:
// x = The value to quantize.
2021-07-02 10:30:13 +00:00
// y = The non-zero integer quantum of the quantization.
2021-09-16 23:33:55 +00:00
// Example:
2021-07-02 10:30:13 +00:00
// a = quantup(12,4); // Returns: 12
// b = quantup(13,4); // Returns: 16
// c = quantup(13.1,4); // Returns: 16
// d = quantup(14,4); // Returns: 16
// e = quantup(14.1,4); // Returns: 16
// f = quantup(15,4); // Returns: 16
// g = quantup(16,4); // Returns: 16
// h = quantup(9,3); // Returns: 9
// i = quantup(10,3); // Returns: 12
// j = quantup(10.4,3); // Returns: 12
// k = quantup(10.5,3); // Returns: 12
// l = quantup(11,3); // Returns: 12
// m = quantup(12,3); // Returns: 12
2021-07-08 06:28:07 +00:00
// n = quantdn(11,2.5); // Returns: 12.5
// o = quantdn(12,2.5); // Returns: 12.5
// p = quantup([12,13,13.1,14,14.1,15,16],4); // Returns: [12,16,16,16,16,16,16]
// q = quantup([9,10,10.4,10.5,11,12],3); // Returns: [9,12,12,12,12,12]
// r = quantup([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,12,12],[12,12,12]]
2019-08-24 18:51:24 +00:00
function quantup ( x , y ) =
2021-07-07 05:37:51 +00:00
assert ( is_finite ( y ) && y > 0 , "The quantum `y` must be a non zero integer." )
2020-07-29 21:41:02 +00:00
is_list ( x )
2021-07-02 10:30:13 +00:00
? [ for ( v = x ) quantup ( v , y ) ]
: assert ( is_finite ( x ) , "The input to quantize must be a number or a list of numbers." )
2020-07-29 21:41:02 +00:00
ceil ( x / y ) * y ;
2017-08-30 00:00:16 +00:00
2020-01-09 04:43:19 +00:00
// Section: Constraints and Modulos
2019-03-23 04:13:18 +00:00
// Function: constrain()
// Usage:
2021-07-02 10:30:13 +00:00
// val = constrain(v, minval, maxval);
2019-03-23 04:13:18 +00:00
// Description:
// Constrains value to a range of values between minval and maxval, inclusive.
// Arguments:
// v = value to constrain.
// minval = minimum value to return, if out of range.
// maxval = maximum value to return, if out of range.
2019-10-23 00:09:08 +00:00
// Example:
2021-07-02 10:30:13 +00:00
// a = constrain(-5, -1, 1); // Returns: -1
// b = constrain(5, -1, 1); // Returns: 1
// c = constrain(0.3, -1, 1); // Returns: 0.3
// d = constrain(9.1, 0, 9); // Returns: 9
// e = constrain(-0.1, 0, 9); // Returns: 0
2020-07-29 21:41:02 +00:00
function constrain ( v , minval , maxval ) =
assert ( is_finite ( v + minval + maxval ) , "Input must be finite number(s)." )
min ( maxval , max ( minval , v ) ) ;
2018-02-16 22:49:32 +00:00
2019-03-23 04:13:18 +00:00
// Function: posmod()
// Usage:
2021-07-02 10:30:13 +00:00
// mod = posmod(x, m)
2019-03-23 04:13:18 +00:00
// Description:
// Returns the positive modulo `m` of `x`. Value returned will be in the range 0 ... `m`-1.
// Arguments:
// x = The value to constrain.
// m = Modulo value.
2019-10-23 00:09:08 +00:00
// Example:
2021-07-02 10:30:13 +00:00
// a = posmod(-700,360); // Returns: 340
// b = posmod(-270,360); // Returns: 90
// c = posmod(-120,360); // Returns: 240
// d = posmod(120,360); // Returns: 120
// e = posmod(270,360); // Returns: 270
// f = posmod(700,360); // Returns: 340
// g = posmod(3,2.5); // Returns: 0.5
2020-07-29 21:41:02 +00:00
function posmod ( x , m ) =
assert ( is_finite ( x ) && is_finite ( m ) && ! approx ( m , 0 ) , "Input must be finite numbers. The divisor cannot be zero." )
( x % m + m ) % m ;
2019-03-23 04:13:18 +00:00
2021-02-20 03:56:43 +00:00
// Function: modang()
2019-09-23 23:38:07 +00:00
// Usage:
2021-07-02 10:30:13 +00:00
// ang = modang(x);
2019-09-23 23:38:07 +00:00
// Description:
// Takes an angle in degrees and normalizes it to an equivalent angle value between -180 and 180.
2019-10-23 00:09:08 +00:00
// Example:
2021-07-02 10:30:13 +00:00
// a1 = modang(-700,360); // Returns: 20
// a2 = modang(-270,360); // Returns: 90
// a3 = modang(-120,360); // Returns: -120
// a4 = modang(120,360); // Returns: 120
// a5 = modang(270,360); // Returns: -90
// a6 = modang(700,360); // Returns: -20
2019-09-23 23:38:07 +00:00
function modang ( x ) =
2020-07-29 21:41:02 +00:00
assert ( is_finite ( x ) , "Input must be a finite number." )
2020-05-30 02:04:34 +00:00
let ( xx = posmod ( x , 360 ) ) xx < 180 ? xx : xx - 360 ;
2019-09-23 23:38:07 +00:00
2020-01-09 04:43:19 +00:00
// Section: Random Number Generation
2019-08-07 00:12:28 +00:00
2019-07-19 04:58:41 +00:00
// Function: rand_int()
2019-05-30 00:42:09 +00:00
// Usage:
2021-07-02 10:30:13 +00:00
// rand_int(minval, maxval, N, [seed]);
2019-05-30 00:42:09 +00:00
// Description:
2020-07-29 21:41:02 +00:00
// Return a list of random integers in the range of minval to maxval, inclusive.
2019-05-30 00:42:09 +00:00
// Arguments:
2020-07-29 21:41:02 +00:00
// minval = Minimum integer value to return.
// maxval = Maximum integer value to return.
2019-05-30 00:42:09 +00:00
// N = Number of random integers to return.
2019-11-07 06:19:19 +00:00
// seed = If given, sets the random number seed.
2019-10-23 00:09:08 +00:00
// Example:
// ints = rand_int(0,100,3);
// int = rand_int(-10,10,1)[0];
2020-07-29 21:41:02 +00:00
function rand_int ( minval , maxval , N , seed = undef ) =
assert ( is_finite ( minval + maxval + N ) && ( is_undef ( seed ) || is_finite ( seed ) ) , "Input must be finite numbers." )
assert ( maxval >= minval , "Max value cannot be smaller than minval" )
let ( rvect = is_def ( seed ) ? rands ( minval , maxval + 1 , N , seed ) : rands ( minval , maxval + 1 , N ) )
2020-05-30 02:04:34 +00:00
[ for ( entry = rvect ) floor ( entry ) ] ;
2019-05-30 00:42:09 +00:00
2021-10-01 03:11:01 +00:00
// Function: random_points()
// Usage:
2021-10-02 03:37:06 +00:00
// points = random_points([N], [dim], [scale], [seed]);
2021-10-02 05:02:29 +00:00
// See Also: random_polygon(), spherical_random_points()
2021-10-01 03:11:01 +00:00
// Topics: Random, Points
// Description:
2021-10-02 03:37:06 +00:00
// Generate `N` uniform random points of dimension `dim` with data ranging from -scale to +scale.
2021-10-01 03:11:01 +00:00
// The `scale` may be a number, in which case the random data lies in a cube,
// or a vector with dimension `dim`, in which case each dimension has its own scale.
// Arguments:
2021-10-02 03:37:06 +00:00
// N = number of points to generate. Default: 1
2021-10-01 03:11:01 +00:00
// dim = dimension of the points. Default: 2
// scale = the scale of the point coordinates. Default: 1
// seed = an optional seed for the random generation.
2021-10-02 03:37:06 +00:00
function random_points ( N , dim = 2 , scale = 1 , seed ) =
assert ( is_int ( N ) && N >= 0 , "The number of points should be a non-negative integer." )
2021-10-01 03:11:01 +00:00
assert ( is_int ( dim ) && dim >= 1 , "The point dimensions should be an integer greater than 1." )
assert ( is_finite ( scale ) || is_vector ( scale , dim ) , "The scale should be a number or a vector with length equal to d." )
let (
rnds = is_undef ( seed )
2021-10-02 03:37:06 +00:00
? rands ( - 1 , 1 , N * dim )
: rands ( - 1 , 1 , N * dim , seed ) )
2021-10-01 03:11:01 +00:00
is_num ( scale )
2021-10-02 03:37:06 +00:00
? scale * [ for ( i = [ 0 : 1 : N - 1 ] ) [ for ( j = [ 0 : dim - 1 ] ) rnds [ i * dim + j ] ] ]
: [ for ( i = [ 0 : 1 : N - 1 ] ) [ for ( j = [ 0 : dim - 1 ] ) scale [ j ] * rnds [ i * dim + j ] ] ] ;
2021-10-01 03:11:01 +00:00
2019-11-07 06:19:19 +00:00
// Function: gaussian_rands()
2019-04-10 22:53:40 +00:00
// Usage:
2021-10-02 03:37:06 +00:00
// arr = gaussian_rands([N],[mean], [cov], [seed]);
2019-04-10 22:53:40 +00:00
// Description:
2021-10-02 03:37:06 +00:00
// Returns a random number or vector with a Gaussian/normal distribution.
2019-04-10 22:53:40 +00:00
// Arguments:
2021-10-02 03:37:06 +00:00
// N = the number of points to return. Default: 1
// mean = The average of the random value (a number or vector). Default: 0
// cov = covariance matrix of the random numbers, or variance in the 1D case. Default: 1
2019-11-07 06:19:19 +00:00
// seed = If given, sets the random number seed.
2021-10-02 03:37:06 +00:00
function gaussian_rands ( N = 1 , mean = 0 , cov = 1 , seed = undef ) =
assert ( is_num ( mean ) || is_vector ( mean ) )
let (
dim = is_num ( mean ) ? 1 : len ( mean )
)
assert ( ( dim = = 1 && is_num ( cov ) ) || is_matrix ( cov , dim , dim ) , "mean and covariance matrix not compatible" )
assert ( is_undef ( seed ) || is_finite ( seed ) )
let (
nums = is_undef ( seed ) ? rands ( 0 , 1 , dim * N * 2 ) : rands ( 0 , 1 , dim * N * 2 , seed ) ,
rdata = [ for ( i = count ( dim * N , 0 , 2 ) ) sqrt ( - 2 * ln ( nums [ i ] ) ) * cos ( 360 * nums [ i + 1 ] ) ]
)
dim = = 1 ? add_scalar ( sqrt ( cov ) * rdata , mean ) :
2021-10-02 03:57:07 +00:00
assert ( is_matrix_symmetric ( cov ) , "Supplied covariance matrix is not symmetric" )
2021-10-02 03:37:06 +00:00
let (
L = cholesky ( cov )
)
2021-10-02 03:57:07 +00:00
assert ( is_def ( L ) , "Supplied covariance matrix is not positive definite" )
move ( mean , array_group ( rdata , dim ) * transpose ( L ) ) ;
2021-10-01 03:11:01 +00:00
// Function: spherical_random_points()
// Usage:
2021-10-02 03:37:06 +00:00
// points = spherical_random_points([N], [radius], [seed]);
2021-10-02 05:02:29 +00:00
// See Also: random_polygon(), random_points()
2021-10-01 03:11:01 +00:00
// Topics: Random, Points
// Description:
// Generate `n` 3D uniformly distributed random points lying on a sphere centered at the origin with radius equal to `radius`.
// Arguments:
2021-10-02 03:37:06 +00:00
// n = number of points to generate. Default: 1
2021-10-01 03:11:01 +00:00
// radius = the sphere radius. Default: 1
// seed = an optional seed for the random generation.
// See https://mathworld.wolfram.com/SpherePointPicking.html
2021-10-02 03:37:06 +00:00
function spherical_random_points ( N = 1 , radius = 1 , seed ) =
2021-10-01 03:11:01 +00:00
assert ( is_int ( n ) && n >= 1 , "The number of points should be an integer greater than zero." )
assert ( is_num ( radius ) && radius > 0 , "The radius should be a non-negative number." )
let ( theta = is_undef ( seed )
? rands ( 0 , 360 , n )
: rands ( 0 , 360 , n , seed ) ,
cosphi = rands ( - 1 , 1 , n ) )
[ for ( i = [ 0 : 1 : n - 1 ] ) let (
sin_phi = sqrt ( 1 - cosphi [ i ] * cosphi [ i ] )
)
radius * [ sin_phi * cos ( theta [ i ] ) , sin_phi * sin ( theta [ i ] ) , cosphi [ i ] ] ] ;
2021-10-01 04:30:28 +00:00
// Function: random_polygon()
2019-04-10 22:53:40 +00:00
// Usage:
2021-10-01 04:30:28 +00:00
// points = random_polygon(n, size, [seed]);
2021-10-02 05:02:29 +00:00
// See Also: random_points(), spherical_random_points()
2021-10-01 04:30:28 +00:00
// Topics: Random, Polygon
2019-04-10 22:53:40 +00:00
// Description:
2021-10-01 04:30:28 +00:00
// Generate the `n` vertices of a random counter-clockwise simple 2d polygon
// inside a circle centered at the origin with radius `size`.
2019-04-10 22:53:40 +00:00
// Arguments:
2021-10-01 04:30:28 +00:00
// n = number of vertices of the polygon. Default: 3
// size = the radius of a circle centered at the origin containing the polygon. Default: 1
// seed = an optional seed for the random generation.
function random_polygon ( n = 3 , size = 1 , seed ) =
assert ( is_int ( n ) && n > 2 , "Improper number of polygon vertices." )
assert ( is_num ( size ) && size > 0 , "Improper size." )
let (
seed = is_undef ( seed ) ? rands ( 0 , 1 , 1 ) [ 0 ] : seed ,
cumm = cumsum ( rands ( 0.1 , 10 , n + 1 , seed ) ) ,
angs = 360 * cumm / cumm [ n - 1 ] ,
rads = rands ( . 01 , size , n , seed + cumm [ 0 ] )
)
[ for ( i = count ( n ) ) rads [ i ] * [ cos ( angs [ i ] ) , sin ( angs [ i ] ) ] ] ;
2019-04-10 22:53:40 +00:00
2017-08-30 00:00:16 +00:00
2020-01-09 04:43:19 +00:00
// Section: GCD/GCF, LCM
2018-09-01 09:38:47 +00:00
2020-01-09 04:43:19 +00:00
// Function: gcd()
// Usage:
2021-07-02 10:30:13 +00:00
// x = gcd(a,b)
2020-01-09 04:43:19 +00:00
// Description:
// Computes the Greatest Common Divisor/Factor of `a` and `b`.
function gcd ( a , b ) =
2021-07-02 10:42:00 +00:00
assert ( is_int ( a ) && is_int ( b ) , "Arguments to gcd must be integers" )
2020-05-30 02:04:34 +00:00
b = = 0 ? abs ( a ) : gcd ( b , a % b ) ;
2019-03-23 04:13:18 +00:00
2020-07-29 21:41:02 +00:00
// Computes lcm for two integers
2020-01-09 04:43:19 +00:00
function _lcm ( a , b ) =
2020-07-29 21:41:02 +00:00
assert ( is_int ( a ) && is_int ( b ) , "Invalid non-integer parameters to lcm" )
2021-07-02 10:30:13 +00:00
assert ( a ! = 0 && b ! = 0 , "Arguments to lcm should not be zero" )
2020-05-30 02:04:34 +00:00
abs ( a * b ) / gcd ( a , b ) ;
2017-08-30 00:00:16 +00:00
2020-01-09 04:43:19 +00:00
// Computes lcm for a list of values
function _lcmlist ( a ) =
2021-03-25 07:23:36 +00:00
len ( a ) = = 1 ? a [ 0 ] :
_lcmlist ( concat ( lcm ( a [ 0 ] , a [ 1 ] ) , list_tail ( a , 2 ) ) ) ;
2019-03-23 04:13:18 +00:00
2020-01-09 04:43:19 +00:00
// Function: lcm()
// Usage:
2021-07-02 10:30:13 +00:00
// div = lcm(a, b);
// divs = lcm(list);
2020-01-09 04:43:19 +00:00
// Description:
// Computes the Least Common Multiple of the two arguments or a list of arguments. Inputs should
// be non-zero integers. The output is always a positive integer. It is an error to pass zero
// as an argument.
function lcm ( a , b = [ ] ) =
2020-07-29 21:41:02 +00:00
! is_list ( a ) && ! is_list ( b )
? _lcm ( a , b )
: let ( arglist = concat ( force_list ( a ) , force_list ( b ) ) )
assert ( len ( arglist ) > 0 , "Invalid call to lcm with empty list(s)" )
_lcmlist ( arglist ) ;
2019-03-23 04:13:18 +00:00
2020-01-09 04:43:19 +00:00
// Section: Sums, Products, Aggregate Functions.
2019-03-23 04:13:18 +00:00
// Function: sum()
2020-10-04 02:50:29 +00:00
// Usage:
2021-06-27 03:59:33 +00:00
// x = sum(v, [dflt]);
2019-03-23 04:13:18 +00:00
// Description:
2020-07-29 21:41:02 +00:00
// Returns the sum of all entries in the given consistent list.
// If passed an array of vectors, returns the sum the vectors.
// If passed an array of matrices, returns the sum of the matrices.
2020-02-09 05:54:39 +00:00
// If passed an empty list, the value of `dflt` will be returned.
2019-03-23 04:13:18 +00:00
// Arguments:
2019-05-10 10:00:41 +00:00
// v = The list to get the sum of.
2020-02-09 05:54:39 +00:00
// dflt = The default value to return if `v` is an empty list. Default: 0
2019-03-23 04:13:18 +00:00
// Example:
// sum([1,2,3]); // returns 6.
// sum([[1,2,3], [3,4,5], [5,6,7]]); // returns [9, 12, 15]
2020-03-03 02:39:57 +00:00
function sum ( v , dflt = 0 ) =
2020-10-04 02:50:29 +00:00
v = = [ ] ? dflt :
2020-05-30 02:04:34 +00:00
assert ( is_consistent ( v ) , "Input to sum is non-numeric or inconsistent" )
2021-04-12 02:29:25 +00:00
is_vector ( v ) || is_matrix ( v ) ? [ for ( i = v ) 1 ] * v :
2020-07-29 21:41:02 +00:00
_sum ( v , v [ 0 ] * 0 ) ;
2020-03-03 02:39:57 +00:00
function _sum ( v , _total , _i = 0 ) = _i >= len ( v ) ? _total : _sum ( v , _total + v [ _i ] , _i + 1 ) ;
2019-08-07 00:12:28 +00:00
// Function: cumsum()
2020-10-04 02:50:29 +00:00
// Usage:
// sums = cumsum(v);
2019-08-07 00:12:28 +00:00
// Description:
2020-07-29 14:30:57 +00:00
// Returns a list where each item is the cumulative sum of all items up to and including the corresponding entry in the input list.
// If passed an array of vectors, returns a list of cumulative vectors sums.
2019-08-07 00:12:28 +00:00
// Arguments:
2020-07-29 14:30:57 +00:00
// v = The list to get the sum of.
2019-08-07 00:12:28 +00:00
// Example:
// cumsum([1,1,1]); // returns [1,2,3]
// cumsum([2,2,2]); // returns [2,4,6]
// cumsum([1,2,3]); // returns [1,3,6]
// cumsum([[1,2,3], [3,4,5], [5,6,7]]); // returns [[1,2,3], [4,6,8], [9,12,15]]
2020-08-03 23:38:36 +00:00
function cumsum ( v ) =
assert ( is_consistent ( v ) , "The input is not consistent." )
_cumsum ( v , _i = 0 , _acc = [ ] ) ;
function _cumsum ( v , _i = 0 , _acc = [ ] ) =
2020-07-29 14:30:57 +00:00
_i = = len ( v ) ? _acc :
2020-08-03 23:38:36 +00:00
_cumsum (
2020-07-29 14:30:57 +00:00
v , _i + 1 ,
concat (
_acc ,
2021-03-30 07:46:59 +00:00
[ _i = = 0 ? v [ _i ] : last ( _acc ) + v [ _i ] ]
2020-07-29 14:30:57 +00:00
)
) ;
2019-03-23 04:13:18 +00:00
2020-07-29 05:52:12 +00:00
2019-03-23 04:13:18 +00:00
// Function: sum_of_sines()
// Usage:
// sum_of_sines(a,sines)
// Description:
// Gives the sum of a series of sines, at a given angle.
// Arguments:
// a = Angle to get the value for.
// sines = List of [amplitude, frequency, offset] items, where the frequency is the number of times the cycle repeats around the circle.
2021-09-16 23:33:55 +00:00
// Example:
2019-10-23 00:09:08 +00:00
// v = sum_of_sines(30, [[10,3,0], [5,5.5,60]]);
2019-03-23 04:13:18 +00:00
function sum_of_sines ( a , sines ) =
2020-07-29 21:41:02 +00:00
assert ( is_finite ( a ) && is_matrix ( sines , undef , 3 ) , "Invalid input." )
sum ( [ for ( s = sines )
let (
ss = point3d ( s ) ,
v = ss [ 0 ] * sin ( a * ss [ 1 ] + ss [ 2 ] )
) v
] ) ;
2019-03-23 04:13:18 +00:00
2019-05-10 10:00:41 +00:00
// Function: deltas()
2020-10-04 02:50:29 +00:00
// Usage:
// delts = deltas(v);
2019-05-10 10:00:41 +00:00
// Description:
2021-06-22 00:20:05 +00:00
// Returns a list with the deltas of adjacent entries in the given list, optionally wrapping back to the front.
2020-07-29 21:41:02 +00:00
// The list should be a consistent list of numeric components (numbers, vectors, matrix, etc).
2019-05-10 10:00:41 +00:00
// Given [a,b,c,d], returns [b-a,c-b,d-c].
2021-06-22 00:20:05 +00:00
//
2019-05-10 10:00:41 +00:00
// Arguments:
// v = The list to get the deltas of.
2021-06-22 00:20:05 +00:00
// wrap = If true, wrap back to the start from the end. ie: return the difference between the last and first items as the last delta. Default: false
2019-05-10 10:00:41 +00:00
// Example:
// deltas([2,5,9,17]); // returns [3,4,8].
// deltas([[1,2,3], [3,6,8], [4,8,11]]); // returns [[2,4,5], [1,2,3]]
2021-06-22 00:20:05 +00:00
function deltas ( v , wrap = false ) =
2020-07-29 21:41:02 +00:00
assert ( is_consistent ( v ) && len ( v ) > 1 , "Inconsistent list or with length<=1." )
2021-06-22 00:20:05 +00:00
[ for ( p = pair ( v , wrap ) ) p [ 1 ] - p [ 0 ] ] ;
2019-05-10 10:00:41 +00:00
2019-05-12 20:32:34 +00:00
// Function: product()
2020-10-04 02:50:29 +00:00
// Usage:
// x = product(v);
2019-05-12 20:32:34 +00:00
// Description:
// Returns the product of all entries in the given list.
2020-07-29 21:41:02 +00:00
// If passed a list of vectors of same dimension, returns a vector of products of each part.
2020-08-03 23:38:36 +00:00
// If passed a list of square matrices, returns the resulting product matrix.
2019-05-12 20:32:34 +00:00
// Arguments:
// v = The list to get the product of.
// Example:
// product([2,3,4]); // returns 24.
// product([[1,2,3], [3,4,5], [5,6,7]]); // returns [15, 48, 105]
2020-07-29 21:41:02 +00:00
function product ( v ) =
assert ( is_vector ( v ) || is_matrix ( v ) || ( is_matrix ( v [ 0 ] , square = true ) && is_consistent ( v ) ) ,
2020-08-03 23:38:36 +00:00
"Invalid input." )
2020-07-29 21:41:02 +00:00
_product ( v , 1 , v [ 0 ] ) ;
function _product ( v , i = 0 , _tot ) =
i >= len ( v ) ? _tot :
_product ( v ,
i + 1 ,
2021-06-15 03:28:49 +00:00
( is_vector ( v [ i ] ) ? v_mul ( _tot , v [ i ] ) : _tot * v [ i ] ) ) ;
2020-07-29 21:41:02 +00:00
2019-05-12 20:32:34 +00:00
2020-10-23 23:06:30 +00:00
// Function: cumprod()
// Description:
// Returns a list where each item is the cumulative product of all items up to and including the corresponding entry in the input list.
// If passed an array of vectors, returns a list of elementwise vector products. If passed a list of square matrices returns matrix
// products multiplying in the order items appear in the list.
// Arguments:
// list = The list to get the product of.
// Example:
// cumprod([1,3,5]); // returns [1,3,15]
// cumprod([2,2,2]); // returns [2,4,8]
// cumprod([[1,2,3], [3,4,5], [5,6,7]])); // returns [[1, 2, 3], [3, 8, 15], [15, 48, 105]]
function cumprod ( list ) =
is_vector ( list ) ? _cumprod ( list ) :
assert ( is_consistent ( list ) , "Input must be a consistent list of scalars, vectors or square matrices" )
is_matrix ( list [ 0 ] ) ? assert ( len ( list [ 0 ] ) = = len ( list [ 0 ] [ 0 ] ) , "Matrices must be square" ) _cumprod ( list )
: _cumprod_vec ( list ) ;
function _cumprod ( v , _i = 0 , _acc = [ ] ) =
_i = = len ( v ) ? _acc :
_cumprod (
v , _i + 1 ,
concat (
_acc ,
[ _i = = 0 ? v [ _i ] : _acc [ len ( _acc ) - 1 ] * v [ _i ] ]
)
) ;
function _cumprod_vec ( v , _i = 0 , _acc = [ ] ) =
_i = = len ( v ) ? _acc :
_cumprod_vec (
v , _i + 1 ,
concat (
_acc ,
2021-06-15 03:28:49 +00:00
[ _i = = 0 ? v [ _i ] : v_mul ( _acc [ len ( _acc ) - 1 ] , v [ _i ] ) ]
2020-10-23 23:06:30 +00:00
)
) ;
2020-07-11 16:22:59 +00:00
// Function: outer_product()
2020-10-04 02:50:29 +00:00
// Usage:
// x = outer_product(u,v);
2020-07-11 16:22:59 +00:00
// Description:
// Compute the outer product of two vectors, a matrix.
// Usage:
// M = outer_product(u,v);
function outer_product ( u , v ) =
2020-07-29 21:41:02 +00:00
assert ( is_vector ( u ) && is_vector ( v ) , "The inputs must be vectors." )
[ for ( ui = u ) ui * v ] ;
2020-07-11 16:22:59 +00:00
2019-03-23 04:13:18 +00:00
// Function: mean()
2020-10-04 02:50:29 +00:00
// Usage:
// x = mean(v);
2019-03-23 04:13:18 +00:00
// Description:
2020-07-29 21:41:02 +00:00
// Returns the arithmetic mean/average of all entries in the given array.
2020-03-17 08:13:47 +00:00
// If passed a list of vectors, returns a vector of the mean of each part.
2019-03-23 04:13:18 +00:00
// Arguments:
// v = The list of values to get the mean of.
// Example:
2019-04-04 07:37:21 +00:00
// mean([2,3,4]); // returns 3.
// mean([[1,2,3], [3,4,5], [5,6,7]]); // returns [3, 4, 5]
2020-07-29 21:41:02 +00:00
function mean ( v ) =
assert ( is_list ( v ) && len ( v ) > 0 , "Invalid list." )
sum ( v ) / len ( v ) ;
2019-03-23 04:13:18 +00:00
2021-05-12 00:51:09 +00:00
// Function: ninther()
// Usage:
// med = ninther(v)
// Description:
// Finds a value in the input list of numbers `v` that is the median of a
// sample of 9 entries of `v`.
// It is a much faster approximation of the true median computation.
// Arguments:
// v = an array of numbers
function ninther ( v ) =
let ( l = len ( v ) )
l < = 4 ? l < = 2 ? v [ 0 ] : _med3 ( v [ 0 ] , v [ 1 ] , v [ 2 ] ) :
l = = 5 ? _med3 ( v [ 0 ] , _med3 ( v [ 1 ] , v [ 2 ] , v [ 3 ] ) , v [ 4 ] ) :
_med3 ( _med3 ( v [ 0 ] , v [ floor ( l / 6 ) ] , v [ floor ( l / 3 ) ] ) ,
_med3 ( v [ floor ( l / 3 ) ] , v [ floor ( l / 2 ) ] , v [ floor ( 2 * l / 3 ) ] ) ,
_med3 ( v [ floor ( 2 * l / 3 ) ] , v [ floor ( ( 5 * l / 3 - 1 ) / 2 ) ] , v [ l - 1 ] ) ) ;
// the median of a triple
function _med3 ( a , b , c ) =
a < c ? a < b ? min ( b , c ) : min ( a , c ) :
b < c ? min ( a , c ) : min ( a , b ) ;
2020-07-29 21:41:02 +00:00
// Function: convolve()
// Usage:
// x = convolve(p,q);
// Description:
2021-06-22 00:20:05 +00:00
// Given two vectors, or one vector and a path or
// two paths of the same dimension, finds the convolution of them.
// If both parameter are vectors, returns the vector convolution.
// If one parameter is a vector and the other a path,
// convolves using products by scalars and returns a path.
// If both parameters are paths, convolve using scalar products
// and returns a vector.
// The returned vector or path has length len(p)+len(q)-1.
2020-07-29 21:41:02 +00:00
// Arguments:
2021-06-22 00:20:05 +00:00
// p = The first vector or path.
// q = The second vector or path.
2020-07-29 21:41:02 +00:00
// Example:
// a = convolve([1,1],[1,2,1]); // Returns: [1,3,3,1]
// b = convolve([1,2,3],[1,2,1])); // Returns: [1,4,8,8,3]
2021-06-22 00:20:05 +00:00
// c = convolve([[1,1],[2,2],[3,1]],[1,2,1])); // Returns: [[1,1],[4,4],[8,6],[8,4],[3,1]]
// d = convolve([[1,1],[2,2],[3,1]],[[1,2],[2,1]])); // Returns: [3,9,11,7]
2020-07-29 21:41:02 +00:00
function convolve ( p , q ) =
p = = [ ] || q = = [ ] ? [ ] :
2021-07-02 10:30:13 +00:00
assert ( ( is_vector ( p ) || is_matrix ( p ) )
2021-06-23 00:20:08 +00:00
&& ( is_vector ( q ) || ( is_matrix ( q ) && ( ! is_vector ( p [ 0 ] ) || ( len ( p [ 0 ] ) = = len ( q [ 0 ] ) ) ) ) ) ,
2021-07-02 10:30:13 +00:00
"The inputs should be vectors or paths all of the same dimension." )
let ( n = len ( p ) ,
m = len ( q ) )
[ for ( i = [ 0 : n + m - 2 ] , k1 = max ( 0 , i - n + 1 ) , k2 = min ( i , m - 1 ) )
sum ( [ for ( j = [ k1 : k2 ] ) p [ i - j ] * q [ j ] ] )
2020-07-29 21:41:02 +00:00
] ;
2020-03-17 08:13:47 +00:00
2020-02-28 22:40:52 +00:00
// Section: Matrix math
2021-10-01 04:30:28 +00:00
// Function: ident()
// Usage:
// mat = ident(n);
// Topics: Affine, Matrices
// Description:
// Create an `n` by `n` square identity matrix.
// Arguments:
// n = The size of the identity matrix square, `n` by `n`.
// Example:
// mat = ident(3);
// // Returns:
// // [
// // [1, 0, 0],
// // [0, 1, 0],
// // [0, 0, 1]
// // ]
// Example:
// mat = ident(4);
// // Returns:
// // [
// // [1, 0, 0, 0],
// // [0, 1, 0, 0],
// // [0, 0, 1, 0],
// // [0, 0, 0, 1]
// // ]
function ident ( n ) = [
for ( i = [ 0 : 1 : n - 1 ] ) [
for ( j = [ 0 : 1 : n - 1 ] ) ( i = = j ) ? 1 : 0
]
] ;
2020-03-01 03:59:39 +00:00
// Function: linear_solve()
2020-10-04 02:50:29 +00:00
// Usage:
// solv = linear_solve(A,b)
2020-03-01 03:59:39 +00:00
// Description:
2020-10-04 02:50:29 +00:00
// Solves the linear system Ax=b. If `A` is square and non-singular the unique solution is returned. If `A` is overdetermined
// the least squares solution is returned. If `A` is underdetermined, the minimal norm solution is returned.
// If `A` is rank deficient or singular then linear_solve returns `[]`. If `b` is a matrix that is compatible with `A`
2020-03-17 11:11:25 +00:00
// then the problem is solved for the matrix valued right hand side and a matrix is returned. Note that if you
2020-10-04 02:50:29 +00:00
// want to solve Ax=b1 and Ax=b2 that you need to form the matrix `transpose([b1,b2])` for the right hand side and then
// transpose the returned value.
2020-09-01 21:57:31 +00:00
function linear_solve ( A , b , pivot = true ) =
2020-07-29 21:41:02 +00:00
assert ( is_matrix ( A ) , "Input should be a matrix." )
2020-05-30 02:04:34 +00:00
let (
m = len ( A ) ,
n = len ( A [ 0 ] )
)
2020-08-16 22:38:17 +00:00
assert ( is_vector ( b , m ) || is_matrix ( b , m ) , "Invalid right hand side or incompatible with the matrix" )
2020-05-30 02:04:34 +00:00
let (
2020-09-01 21:57:31 +00:00
qr = m < n ? qr_factor ( transpose ( A ) , pivot ) : qr_factor ( A , pivot ) ,
2020-05-30 02:04:34 +00:00
maxdim = max ( n , m ) ,
mindim = min ( n , m ) ,
Q = submatrix ( qr [ 0 ] , [ 0 : maxdim - 1 ] , [ 0 : mindim - 1 ] ) ,
R = submatrix ( qr [ 1 ] , [ 0 : mindim - 1 ] , [ 0 : mindim - 1 ] ) ,
2020-09-01 21:57:31 +00:00
P = qr [ 2 ] ,
2020-05-30 02:04:34 +00:00
zeros = [ for ( i = [ 0 : mindim - 1 ] ) if ( approx ( R [ i ] [ i ] , 0 ) ) i ]
)
2020-07-11 16:22:59 +00:00
zeros ! = [ ] ? [ ] :
2020-09-01 21:57:31 +00:00
m < n ? Q * back_substitute ( R , transpose ( P ) * b , transpose = true ) // Too messy to avoid input checks here
: P * _back_substitute ( R , transpose ( Q ) * b ) ; // Calling internal version skips input checks
2020-03-17 11:11:25 +00:00
// Function: matrix_inverse()
// Usage:
2020-10-04 02:50:29 +00:00
// mat = matrix_inverse(A)
2020-03-17 11:11:25 +00:00
// Description:
2020-10-04 02:50:29 +00:00
// Compute the matrix inverse of the square matrix `A`. If `A` is singular, returns `undef`.
// Note that if you just want to solve a linear system of equations you should NOT use this function.
// Instead use [[`linear_solve()`|linear_solve]], or use [[`qr_factor()`|qr_factor]]. The computation
2020-03-17 11:11:25 +00:00
// will be faster and more accurate.
function matrix_inverse ( A ) =
2020-10-04 02:50:29 +00:00
assert ( is_matrix ( A ) && len ( A ) = = len ( A [ 0 ] ) , "Input to matrix_inverse() must be a square matrix" )
2020-05-30 02:04:34 +00:00
linear_solve ( A , ident ( len ( A ) ) ) ;
2020-03-01 03:59:39 +00:00
2020-09-07 00:15:08 +00:00
2021-10-01 21:49:20 +00:00
// Function: rot_inverse()
// Usage:
// B = rot_inverse(A)
// Description:
// Inverts a 2d (3x3) or 3d (4x4) rotation matrix. The matrix can be a rotation around any center,
// so it may include a translation.
function rot_inverse ( T ) =
assert ( is_matrix ( T , square = true ) , "Matrix must be square" )
let ( n = len ( T ) )
assert ( n = = 3 || n = = 4 , "Matrix must be 3x3 or 4x4" )
let (
rotpart = [ for ( i = [ 0 : n - 2 ] ) [ for ( j = [ 0 : n - 2 ] ) T [ j ] [ i ] ] ] ,
transpart = [ for ( row = [ 0 : n - 2 ] ) T [ row ] [ n - 1 ] ]
)
assert ( approx ( determinant ( T ) , 1 ) , "Matrix is not a rotation" )
concat ( hstack ( rotpart , - rotpart * transpart ) , [ [ for ( i = [ 2 : n ] ) 0 , 1 ] ] ) ;
2020-09-01 22:38:31 +00:00
// Function: null_space()
// Usage:
2020-10-04 02:50:29 +00:00
// x = null_space(A)
2020-09-01 22:38:31 +00:00
// Description:
2020-10-04 02:50:29 +00:00
// Returns an orthonormal basis for the null space of `A`, namely the vectors {x} such that Ax=0.
// If the null space is just the origin then returns an empty list.
2020-09-01 22:38:31 +00:00
function null_space ( A , eps = 1e-12 ) =
assert ( is_matrix ( A ) )
let (
2020-10-04 02:50:29 +00:00
Q_R = qr_factor ( transpose ( A ) , pivot = true ) ,
R = Q_R [ 1 ] ,
zrow = [ for ( i = idx ( R ) ) if ( all_zero ( R [ i ] , eps ) ) i ]
2020-09-01 22:38:31 +00:00
)
2020-10-04 02:50:29 +00:00
len ( zrow ) = = 0 ? [ ] :
2021-10-16 02:39:10 +00:00
transpose ( columns ( Q_R [ 0 ] , zrow ) ) ;
2020-09-01 22:38:31 +00:00
2020-03-01 03:59:39 +00:00
2020-02-28 22:40:52 +00:00
// Function: qr_factor()
2020-10-04 03:29:35 +00:00
// Usage:
// qr = qr_factor(A,[pivot]);
2020-02-28 22:40:52 +00:00
// Description:
2020-09-01 21:57:31 +00:00
// Calculates the QR factorization of the input matrix A and returns it as the list [Q,R,P]. This factorization can be
// used to solve linear systems of equations. The factorization is A = Q*R*transpose(P). If pivot is false (the default)
// then P is the identity matrix and A = Q*R. If pivot is true then column pivoting results in an R matrix where the diagonal
// is non-decreasing. The use of pivoting is supposed to increase accuracy for poorly conditioned problems, and is necessary
// for rank estimation or computation of the null space, but it may be slower.
function qr_factor ( A , pivot = false ) =
2020-07-29 21:41:02 +00:00
assert ( is_matrix ( A ) , "Input must be a matrix." )
2020-05-30 02:04:34 +00:00
let (
2020-10-04 02:50:29 +00:00
m = len ( A ) ,
n = len ( A [ 0 ] )
2020-05-30 02:04:34 +00:00
)
let (
2020-10-04 02:50:29 +00:00
qr = _qr_factor ( A , Q = ident ( m ) , P = ident ( n ) , pivot = pivot , column = 0 , m = m , n = n ) ,
Rzero = let ( R = qr [ 1 ] ) [
for ( i = [ 0 : m - 1 ] ) [
let ( ri = R [ i ] )
for ( j = [ 0 : n - 1 ] ) i > j ? 0 : ri [ j ]
2020-05-30 02:04:34 +00:00
]
2020-10-04 02:50:29 +00:00
]
) [ qr [ 0 ] , Rzero , qr [ 2 ] ] ;
2020-02-28 22:40:52 +00:00
2020-09-01 21:57:31 +00:00
function _qr_factor ( A , Q , P , pivot , column , m , n ) =
column >= min ( m - 1 , n ) ? [ Q , A , P ] :
2020-05-30 02:04:34 +00:00
let (
2020-09-01 21:57:31 +00:00
swap = ! pivot ? 1
2020-09-28 23:56:18 +00:00
: _swap_matrix ( n , column , column + max_index ( [ for ( i = [ column : n - 1 ] ) sqr ( [ for ( j = [ column : m - 1 ] ) A [ j ] [ i ] ] ) ] ) ) ,
2020-09-01 21:57:31 +00:00
A = pivot ? A * swap : A ,
2020-05-30 02:04:34 +00:00
x = [ for ( i = [ column : 1 : m - 1 ] ) A [ i ] [ column ] ] ,
alpha = ( x [ 0 ] < = 0 ? 1 : - 1 ) * norm ( x ) ,
u = x - concat ( [ alpha ] , repeat ( 0 , m - 1 ) ) ,
2020-07-07 01:50:50 +00:00
v = alpha = = 0 ? u : u / norm ( u ) ,
2020-07-11 16:22:59 +00:00
Qc = ident ( len ( x ) ) - 2 * outer_product ( v , v ) ,
2020-09-01 21:57:31 +00:00
Qf = [ for ( i = [ 0 : m - 1 ] ) [ for ( j = [ 0 : m - 1 ] ) i < column || j < column ? ( i = = j ? 1 : 0 ) : Qc [ i - column ] [ j - column ] ] ]
2020-05-30 02:04:34 +00:00
)
2020-09-01 21:57:31 +00:00
_qr_factor ( Qf * A , Q * Qf , P * swap , pivot , column + 1 , m , n ) ;
// Produces an n x n matrix that swaps column i and j (when multiplied on the right)
function _swap_matrix ( n , i , j ) =
assert ( i < n && j < n && i >= 0 && j >= 0 , "Swap indices out of bounds" )
[ for ( y = [ 0 : n - 1 ] ) [ for ( x = [ 0 : n - 1 ] )
x = = i ? ( y = = j ? 1 : 0 )
: x = = j ? ( y = = i ? 1 : 0 )
: x = = y ? 1 : 0 ] ] ;
2020-03-01 23:42:12 +00:00
2020-02-28 22:40:52 +00:00
// Function: back_substitute()
2020-10-04 03:29:35 +00:00
// Usage:
2021-06-27 03:59:33 +00:00
// x = back_substitute(R, b, [transpose]);
2020-02-28 22:40:52 +00:00
// Description:
2020-07-29 21:41:02 +00:00
// Solves the problem Rx=b where R is an upper triangular square matrix. The lower triangular entries of R are
// ignored. If transpose==true then instead solve transpose(R)*x=b.
2020-03-17 11:11:25 +00:00
// You can supply a compatible matrix b and it will produce the solution for every column of b. Note that if you want to
2020-07-11 16:22:59 +00:00
// solve Rx=b1 and Rx=b2 you must set b to transpose([b1,b2]) and then take the transpose of the result. If the matrix
// is singular (e.g. has a zero on the diagonal) then it returns [].
2020-07-31 00:46:19 +00:00
function back_substitute ( R , b , transpose = false ) =
2020-05-30 02:04:34 +00:00
assert ( is_matrix ( R , square = true ) )
let ( n = len ( R ) )
2020-07-11 16:22:59 +00:00
assert ( is_vector ( b , n ) || is_matrix ( b , n ) , str ( "R and b are not compatible in back_substitute " , n , len ( b ) ) )
2020-07-31 00:46:19 +00:00
transpose
2020-08-11 14:21:36 +00:00
? reverse ( _back_substitute ( transpose ( R , reverse = true ) , reverse ( b ) ) )
2020-07-31 00:46:19 +00:00
: _back_substitute ( R , b ) ;
function _back_substitute ( R , b , x = [ ] ) =
2020-08-11 14:21:36 +00:00
let ( n = len ( R ) )
len ( x ) = = n ? x
2020-07-31 00:46:19 +00:00
: let ( ind = n - len ( x ) - 1 )
R [ ind ] [ ind ] = = 0 ? [ ]
: let (
newvalue = len ( x ) = = 0
? b [ ind ] / R [ ind ] [ ind ]
2021-03-30 07:46:59 +00:00
: ( b [ ind ] - list_tail ( R [ ind ] , ind + 1 ) * x ) / R [ ind ] [ ind ]
2020-07-31 00:46:19 +00:00
)
_back_substitute ( R , b , concat ( [ newvalue ] , x ) ) ;
2020-08-02 00:08:24 +00:00
2020-01-09 04:43:19 +00:00
2021-10-02 03:37:06 +00:00
// Function: cholesky()
// Usage:
// L = cholesky(A);
// Description:
// Compute the cholesky factor, L, of the symmetric positive definite matrix A.
// The matrix L is lower triangular and L * transpose(L) = A. If the A is
// not symmetric then an error is displayed. If the matrix is symmetric but
// not positive definite then undef is returned.
function cholesky ( A ) =
assert ( is_matrix ( A , square = true ) , "A must be a square matrix" )
assert ( is_matrix_symmetric ( A ) , "Cholesky factorization requires a symmetric matrix" )
_cholesky ( A , ident ( len ( A ) ) , len ( A ) ) ;
2021-10-02 03:57:07 +00:00
function _cholesky ( A , L , n ) =
2021-10-02 03:37:06 +00:00
A [ 0 ] [ 0 ] < 0 ? undef : // Matrix not positive definite
len ( A ) = = 1 ? submatrix_set ( L , [ [ sqrt ( A [ 0 ] [ 0 ] ) ] ] , n - 1 , n - 1 ) :
let (
2021-10-02 03:57:07 +00:00
i = n + 1 - len ( A )
2021-10-02 03:37:06 +00:00
)
let (
sqrtAii = sqrt ( A [ 0 ] [ 0 ] ) ,
Lnext = [ for ( j = [ 0 : n - 1 ] )
[ for ( k = [ 0 : n - 1 ] )
j < i - 1 || k < i - 1 ? ( j = = k ? 1 : 0 )
: j = = i - 1 && k = = i - 1 ? sqrtAii
: j = = i - 1 ? 0
: k = = i - 1 ? A [ j - ( i - 1 ) ] [ 0 ] / sqrtAii
: j = = k ? 1 : 0 ] ] ,
Anext = submatrix ( A , [ 1 : n - 1 ] , [ 1 : n - 1 ] ) - outer_product ( list_tail ( A [ 0 ] ) , list_tail ( A [ 0 ] ) ) / A [ 0 ] [ 0 ]
)
_cholesky ( Anext , L * Lnext , n ) ;
2019-05-28 00:50:04 +00:00
// Function: det2()
2020-10-04 02:50:29 +00:00
// Usage:
// d = det2(M);
2019-05-28 00:50:04 +00:00
// Description:
// Optimized function that returns the determinant for the given 2x2 square matrix.
// Arguments:
// M = The 2x2 square matrix to get the determinant of.
// Example:
// M = [ [6,-2], [1,8] ];
2019-09-19 09:42:42 +00:00
// det = det2(M); // Returns: 50
2020-07-29 21:41:02 +00:00
function det2 ( M ) =
2020-10-04 02:50:29 +00:00
assert ( is_matrix ( M , 2 , 2 ) , "Matrix must be 2x2." )
2020-07-29 21:41:02 +00:00
M [ 0 ] [ 0 ] * M [ 1 ] [ 1 ] - M [ 0 ] [ 1 ] * M [ 1 ] [ 0 ] ;
2019-05-28 00:50:04 +00:00
// Function: det3()
2020-10-04 02:50:29 +00:00
// Usage:
// d = det3(M);
2019-05-28 00:50:04 +00:00
// Description:
// Optimized function that returns the determinant for the given 3x3 square matrix.
// Arguments:
// M = The 3x3 square matrix to get the determinant of.
// Example:
// M = [ [6,4,-2], [1,-2,8], [1,5,7] ];
// det = det3(M); // Returns: -334
function det3 ( M ) =
2020-10-04 02:50:29 +00:00
assert ( is_matrix ( M , 3 , 3 ) , "Matrix must be 3x3." )
2020-05-30 02:04:34 +00:00
M [ 0 ] [ 0 ] * ( M [ 1 ] [ 1 ] * M [ 2 ] [ 2 ] - M [ 2 ] [ 1 ] * M [ 1 ] [ 2 ] ) -
M [ 1 ] [ 0 ] * ( M [ 0 ] [ 1 ] * M [ 2 ] [ 2 ] - M [ 2 ] [ 1 ] * M [ 0 ] [ 2 ] ) +
M [ 2 ] [ 0 ] * ( M [ 0 ] [ 1 ] * M [ 1 ] [ 2 ] - M [ 1 ] [ 1 ] * M [ 0 ] [ 2 ] ) ;
2019-05-28 00:50:04 +00:00
// Function: determinant()
2020-10-04 02:50:29 +00:00
// Usage:
// d = determinant(M);
2019-05-28 00:50:04 +00:00
// Description:
// Returns the determinant for the given square matrix.
// Arguments:
// M = The NxN square matrix to get the determinant of.
// Example:
// M = [ [6,4,-2,9], [1,-2,8,3], [1,5,7,6], [4,2,5,1] ];
// det = determinant(M); // Returns: 2267
function determinant ( M ) =
2020-10-04 02:50:29 +00:00
assert ( is_matrix ( M , square = true ) , "Input should be a square matrix." )
2020-05-30 02:04:34 +00:00
len ( M ) = = 1 ? M [ 0 ] [ 0 ] :
len ( M ) = = 2 ? det2 ( M ) :
len ( M ) = = 3 ? det3 ( M ) :
sum (
[ for ( col = [ 0 : 1 : len ( M ) - 1 ] )
( ( col % 2 = = 0 ) ? 1 : - 1 ) *
2020-07-29 21:41:02 +00:00
M [ col ] [ 0 ] *
determinant (
[ for ( r = [ 1 : 1 : len ( M ) - 1 ] )
[ for ( c = [ 0 : 1 : len ( M ) - 1 ] )
if ( c ! = col ) M [ c ] [ r ]
]
2020-05-30 02:04:34 +00:00
]
2020-07-29 21:41:02 +00:00
)
2020-05-30 02:04:34 +00:00
]
) ;
2019-05-28 00:50:04 +00:00
2020-03-06 23:33:53 +00:00
// Function: is_matrix()
// Usage:
2021-07-02 10:30:13 +00:00
// test = is_matrix(A, [m], [n], [square])
2020-03-06 23:33:53 +00:00
// Description:
// Returns true if A is a numeric matrix of height m and width n. If m or n
// are omitted or set to undef then true is returned for any positive dimension.
2020-03-17 11:11:25 +00:00
// Arguments:
2020-10-04 02:50:29 +00:00
// A = The matrix to test.
// m = Is given, requires the matrix to have the given height.
// n = Is given, requires the matrix to have the given width.
// square = If true, requires the matrix to have a width equal to its height. Default: false
2020-07-29 05:52:12 +00:00
function is_matrix ( A , m , n , square = false ) =
2020-10-04 02:50:29 +00:00
is_list ( A )
&& ( ( is_undef ( m ) && len ( A ) ) || len ( A ) = = m )
&& ( ! square || len ( A ) = = len ( A [ 0 ] ) )
2021-04-11 11:33:40 +00:00
&& is_vector ( A [ 0 ] , n )
2020-10-04 02:50:29 +00:00
&& is_consistent ( A ) ;
2020-01-09 04:43:19 +00:00
2020-03-17 11:11:25 +00:00
2020-09-01 21:57:31 +00:00
// Function: norm_fro()
// Usage:
// norm_fro(A)
// Description:
// Computes frobenius norm of input matrix. The frobenius norm is the square root of the sum of the
// squares of all of the entries of the matrix. On vectors it is the same as the usual 2-norm.
// This is an easily computed norm that is convenient for comparing two matrices.
function norm_fro ( A ) =
2020-09-02 20:46:58 +00:00
assert ( is_matrix ( A ) || is_vector ( A ) )
norm ( flatten ( A ) ) ;
2020-09-01 21:57:31 +00:00
2020-10-20 20:26:11 +00:00
// Function: matrix_trace()
// Usage:
// matrix_trace(M)
// Description:
// Computes the trace of a square matrix, the sum of the entries on the diagonal.
function matrix_trace ( M ) =
assert ( is_matrix ( M , square = true ) , "Input to trace must be a square matrix" )
[ for ( i = [ 0 : 1 : len ( M ) - 1 ] ) 1 ] * [ for ( i = [ 0 : 1 : len ( M ) - 1 ] ) M [ i ] [ i ] ] ;
2019-04-02 06:44:12 +00:00
// Section: Comparisons and Logic
2020-09-07 00:15:08 +00:00
// Function: all_zero()
2020-08-27 01:02:16 +00:00
// Usage:
2021-06-27 03:59:33 +00:00
// x = all_zero(x, [eps]);
2020-08-27 01:02:16 +00:00
// Description:
2020-09-08 06:10:39 +00:00
// Returns true if the finite number passed to it is approximately zero, to within `eps`.
2020-08-27 01:02:16 +00:00
// If passed a list, recursively checks if all items in the list are approximately zero.
// Otherwise, returns false.
// Arguments:
// x = The value to check.
// eps = The maximum allowed variance. Default: `EPSILON` (1e-9)
// Example:
2021-07-02 10:30:13 +00:00
// a = all_zero(0); // Returns: true.
// b = all_zero(1e-3); // Returns: false.
// c = all_zero([0,0,0]); // Returns: true.
// d = all_zero([0,0,1e-3]); // Returns: false.
2020-09-07 00:15:08 +00:00
function all_zero ( x , eps = EPSILON ) =
2020-09-08 06:10:39 +00:00
is_finite ( x ) ? approx ( x , eps ) :
2020-09-07 00:15:08 +00:00
is_list ( x ) ? ( x ! = [ ] && [ for ( xx = x ) if ( ! all_zero ( xx , eps = eps ) ) 1 ] = = [ ] ) :
2020-09-08 06:10:39 +00:00
false ;
// Function: all_nonzero()
// Usage:
2021-07-02 10:30:13 +00:00
// test = all_nonzero(x, [eps]);
2020-09-08 06:10:39 +00:00
// Description:
// Returns true if the finite number passed to it is not almost zero, to within `eps`.
// If passed a list, recursively checks if all items in the list are not almost zero.
// Otherwise, returns false.
// Arguments:
// x = The value to check.
// eps = The maximum allowed variance. Default: `EPSILON` (1e-9)
// Example:
2021-07-02 10:30:13 +00:00
// a = all_nonzero(0); // Returns: false.
// b = all_nonzero(1e-3); // Returns: true.
// c = all_nonzero([0,0,0]); // Returns: false.
// d = all_nonzero([0,0,1e-3]); // Returns: false.
// e = all_nonzero([1e-3,1e-3,1e-3]); // Returns: true.
2020-09-08 06:10:39 +00:00
function all_nonzero ( x , eps = EPSILON ) =
is_finite ( x ) ? ! approx ( x , eps ) :
is_list ( x ) ? ( x ! = [ ] && [ for ( xx = x ) if ( ! all_nonzero ( xx , eps = eps ) ) 1 ] = = [ ] ) :
2020-08-27 01:02:16 +00:00
false ;
2020-09-07 00:15:08 +00:00
// Function: all_positive()
2020-08-27 01:02:16 +00:00
// Usage:
2021-07-02 10:30:13 +00:00
// test = all_positive(x);
2020-08-27 01:02:16 +00:00
// Description:
2020-09-08 06:10:39 +00:00
// Returns true if the finite number passed to it is greater than zero.
2020-08-27 01:02:16 +00:00
// If passed a list, recursively checks if all items in the list are positive.
// Otherwise, returns false.
// Arguments:
// x = The value to check.
// Example:
2021-07-02 10:30:13 +00:00
// a = all_positive(-2); // Returns: false.
// b = all_positive(0); // Returns: false.
// c = all_positive(2); // Returns: true.
// d = all_positive([0,0,0]); // Returns: false.
// e = all_positive([0,1,2]); // Returns: false.
// f = all_positive([3,1,2]); // Returns: true.
// g = all_positive([3,-1,2]); // Returns: false.
2020-09-07 00:15:08 +00:00
function all_positive ( x ) =
2020-08-27 01:02:16 +00:00
is_num ( x ) ? x > 0 :
2020-09-08 06:10:39 +00:00
is_list ( x ) ? ( x ! = [ ] && [ for ( xx = x ) if ( ! all_positive ( xx ) ) 1 ] = = [ ] ) :
2020-08-27 01:02:16 +00:00
false ;
2020-09-07 00:15:08 +00:00
// Function: all_negative()
2020-08-27 01:02:16 +00:00
// Usage:
2021-07-02 10:30:13 +00:00
// test = all_negative(x);
2020-08-27 01:02:16 +00:00
// Description:
2020-09-08 06:10:39 +00:00
// Returns true if the finite number passed to it is less than zero.
2020-08-27 01:02:16 +00:00
// If passed a list, recursively checks if all items in the list are negative.
// Otherwise, returns false.
// Arguments:
// x = The value to check.
// Example:
2021-07-02 10:30:13 +00:00
// a = all_negative(-2); // Returns: true.
// b = all_negative(0); // Returns: false.
// c = all_negative(2); // Returns: false.
// d = all_negative([0,0,0]); // Returns: false.
// e = all_negative([0,1,2]); // Returns: false.
// f = all_negative([3,1,2]); // Returns: false.
// g = all_negative([3,-1,2]); // Returns: false.
// h = all_negative([-3,-1,-2]); // Returns: true.
2020-09-07 00:15:08 +00:00
function all_negative ( x ) =
2020-08-27 01:02:16 +00:00
is_num ( x ) ? x < 0 :
2020-09-08 06:10:39 +00:00
is_list ( x ) ? ( x ! = [ ] && [ for ( xx = x ) if ( ! all_negative ( xx ) ) 1 ] = = [ ] ) :
2020-08-27 01:02:16 +00:00
false ;
2020-09-07 00:15:08 +00:00
// Function: all_nonpositive()
2020-08-27 01:02:16 +00:00
// Usage:
2020-09-07 00:15:08 +00:00
// all_nonpositive(x);
2020-08-27 01:02:16 +00:00
// Description:
2020-09-08 06:10:39 +00:00
// Returns true if the finite number passed to it is less than or equal to zero.
2020-08-27 01:02:16 +00:00
// If passed a list, recursively checks if all items in the list are nonpositive.
// Otherwise, returns false.
// Arguments:
// x = The value to check.
// Example:
2021-07-02 10:30:13 +00:00
// a = all_nonpositive(-2); // Returns: true.
// b = all_nonpositive(0); // Returns: true.
// c = all_nonpositive(2); // Returns: false.
// d = all_nonpositive([0,0,0]); // Returns: true.
// e = all_nonpositive([0,1,2]); // Returns: false.
// f = all_nonpositive([3,1,2]); // Returns: false.
// g = all_nonpositive([3,-1,2]); // Returns: false.
// h = all_nonpositive([-3,-1,-2]); // Returns: true.
2020-09-07 00:15:08 +00:00
function all_nonpositive ( x ) =
2020-08-27 01:02:16 +00:00
is_num ( x ) ? x < = 0 :
2020-09-08 06:10:39 +00:00
is_list ( x ) ? ( x ! = [ ] && [ for ( xx = x ) if ( ! all_nonpositive ( xx ) ) 1 ] = = [ ] ) :
2020-08-27 01:02:16 +00:00
false ;
2020-09-07 00:15:08 +00:00
// Function: all_nonnegative()
2020-08-27 01:02:16 +00:00
// Usage:
2020-09-07 00:15:08 +00:00
// all_nonnegative(x);
2020-08-27 01:02:16 +00:00
// Description:
2020-09-08 06:10:39 +00:00
// Returns true if the finite number passed to it is greater than or equal to zero.
2020-08-27 01:02:16 +00:00
// If passed a list, recursively checks if all items in the list are nonnegative.
// Otherwise, returns false.
// Arguments:
// x = The value to check.
// Example:
2021-07-02 10:30:13 +00:00
// a = all_nonnegative(-2); // Returns: false.
// b = all_nonnegative(0); // Returns: true.
// c = all_nonnegative(2); // Returns: true.
// d = all_nonnegative([0,0,0]); // Returns: true.
// e = all_nonnegative([0,1,2]); // Returns: true.
// f = all_nonnegative([0,-1,-2]); // Returns: false.
// g = all_nonnegative([3,1,2]); // Returns: true.
// h = all_nonnegative([3,-1,2]); // Returns: false.
// i = all_nonnegative([-3,-1,-2]); // Returns: false.
2020-09-07 00:15:08 +00:00
function all_nonnegative ( x ) =
2020-08-27 01:02:16 +00:00
is_num ( x ) ? x >= 0 :
2020-09-08 06:10:39 +00:00
is_list ( x ) ? ( x ! = [ ] && [ for ( xx = x ) if ( ! all_nonnegative ( xx ) ) 1 ] = = [ ] ) :
2020-08-27 01:02:16 +00:00
false ;
2021-04-12 02:29:25 +00:00
// Function all_equal()
// Usage:
2021-07-02 10:30:13 +00:00
// b = all_equal(vec, [eps]);
2021-04-12 02:29:25 +00:00
// Description:
// Returns true if all of the entries in vec are equal to each other, or approximately equal to each other if eps is set.
// Arguments:
// vec = vector to check
// eps = Set to tolerance for approximate equality. Default: 0
function all_equal ( vec , eps = 0 ) =
eps = = 0 ? [ for ( v = vec ) if ( v ! = vec [ 0 ] ) v ] = = [ ]
: [ for ( v = vec ) if ( ! approx ( v , vec [ 0 ] ) ) v ] = = [ ] ;
2021-07-01 00:05:44 +00:00
// Function: all_integer()
// Usage:
// bool = all_integer(x);
// Description:
// If given a number, returns true if the number is a finite integer.
// If given an empty list, returns false. If given a non-empty list, returns
// true if every item of the list is an integer. Otherwise, returns false.
// Arguments:
// x = The value to check.
2021-09-16 23:33:55 +00:00
// Example:
2021-07-01 00:05:44 +00:00
// b = all_integer(true); // Returns: false
// b = all_integer("foo"); // Returns: false
// b = all_integer(4); // Returns: true
// b = all_integer(4.5); // Returns: false
// b = all_integer([]); // Returns: false
// b = all_integer([3,4,5]); // Returns: true
// b = all_integer([3,4.2,5]); // Returns: false
// b = all_integer([3,[4,7],5]); // Returns: false
function all_integer ( x ) =
is_num ( x ) ? is_int ( x ) :
is_list ( x ) ? ( x ! = [ ] && [ for ( xx = x ) if ( ! is_int ( xx ) ) 1 ] = = [ ] ) :
false ;
2020-01-09 04:43:19 +00:00
// Function: approx()
// Usage:
2021-07-02 10:30:13 +00:00
// test = approx(a, b, [eps])
2020-01-09 04:43:19 +00:00
// Description:
// Compares two numbers or vectors, and returns true if they are closer than `eps` to each other.
// Arguments:
// a = First value.
// b = Second value.
// eps = The maximum allowed difference between `a` and `b` that will return true.
// Example:
2021-07-02 10:30:13 +00:00
// test1 = approx(-0.3333333333,-1/3); // Returns: true
// test2 = approx(0.3333333333,1/3); // Returns: true
// test3 = approx(0.3333,1/3); // Returns: false
// test4 = approx(0.3333,1/3,eps=1e-3); // Returns: true
// test5 = approx(PI,3.1415926536); // Returns: true
2020-07-29 21:41:02 +00:00
function approx ( a , b , eps = EPSILON ) =
2020-10-04 02:50:29 +00:00
( a = = b && is_bool ( a ) = = is_bool ( b ) ) ||
( is_num ( a ) && is_num ( b ) && abs ( a - b ) < = eps ) ||
( is_list ( a ) && is_list ( b ) && len ( a ) = = len ( b ) && [ ] = = [ for ( i = idx ( a ) ) if ( ! approx ( a [ i ] , b [ i ] , eps = eps ) ) 1 ] ) ;
2020-01-09 04:43:19 +00:00
2019-04-02 06:44:12 +00:00
2019-06-24 22:31:59 +00:00
function _type_num ( x ) =
2020-05-30 02:04:34 +00:00
is_undef ( x ) ? 0 :
is_bool ( x ) ? 1 :
is_num ( x ) ? 2 :
2020-06-21 02:51:58 +00:00
is_nan ( x ) ? 3 :
is_string ( x ) ? 4 :
is_list ( x ) ? 5 : 6 ;
2019-06-24 22:31:59 +00:00
2019-03-29 00:46:35 +00:00
// Function: compare_vals()
// Usage:
2021-07-02 10:30:13 +00:00
// test = compare_vals(a, b);
2019-03-29 00:46:35 +00:00
// Description:
2019-04-02 06:40:15 +00:00
// Compares two values. Lists are compared recursively.
2020-06-21 02:51:58 +00:00
// Returns <0 if a<b. Returns >0 if a>b. Returns 0 if a==b.
2020-07-29 21:41:02 +00:00
// If types are not the same, then undef < bool < nan < num < str < list < range.
2019-03-23 04:13:18 +00:00
// Arguments:
2019-03-29 00:46:35 +00:00
// a = First value to compare.
// b = Second value to compare.
2019-04-03 20:54:48 +00:00
function compare_vals ( a , b ) =
2020-05-30 02:04:34 +00:00
( a = = b ) ? 0 :
let ( t1 = _type_num ( a ) , t2 = _type_num ( b ) ) ( t1 ! = t2 ) ? ( t1 - t2 ) :
is_list ( a ) ? compare_lists ( a , b ) :
2020-06-21 02:51:58 +00:00
is_nan ( a ) ? 0 :
2020-05-30 02:04:34 +00:00
( a < b ) ? - 1 : ( a > b ) ? 1 : 0 ;
2019-03-29 00:46:35 +00:00
// Function: compare_lists()
// Usage:
2021-07-02 10:30:13 +00:00
// test = compare_lists(a, b)
2019-03-29 00:46:35 +00:00
// Description:
2019-06-24 22:31:59 +00:00
// Compare contents of two lists using `compare_vals()`.
2019-03-29 00:46:35 +00:00
// Returns <0 if `a`<`b`.
// Returns 0 if `a`==`b`.
2019-04-03 20:54:48 +00:00
// Returns >0 if `a`>`b`.
2019-03-29 00:46:35 +00:00
// Arguments:
// a = First list to compare.
// b = Second list to compare.
2019-06-24 22:31:59 +00:00
function compare_lists ( a , b ) =
2021-04-06 23:59:56 +00:00
a = = b ? 0 :
let (
cmps = [
for ( i = [ 0 : 1 : min ( len ( a ) , len ( b ) ) - 1 ] )
let ( cmp = compare_vals ( a [ i ] , b [ i ] ) )
if ( cmp ! = 0 ) cmp
]
)
cmps = = [ ] ? ( len ( a ) - len ( b ) ) : cmps [ 0 ] ;
2019-03-23 04:13:18 +00:00
// Function: any()
2020-10-04 02:50:29 +00:00
// Usage:
2021-05-24 00:51:14 +00:00
// bool = any(l);
2021-07-02 10:30:13 +00:00
// bool = any(l, func); // Requires OpenSCAD 2021.01 or later.
2021-05-24 00:51:14 +00:00
// Requirements:
// Requires OpenSCAD 2021.01 or later to use the `func=` argument.
2019-03-25 09:53:49 +00:00
// Description:
// Returns true if any item in list `l` evaluates as true.
2019-03-23 04:13:18 +00:00
// Arguments:
// l = The list to test for true items.
2021-04-06 23:59:56 +00:00
// func = An optional function literal of signature (x), returning bool, to test each list item with.
2019-03-23 04:13:18 +00:00
// Example:
// any([0,false,undef]); // Returns false.
// any([1,false,undef]); // Returns true.
// any([1,5,true]); // Returns true.
2021-04-06 23:59:56 +00:00
// any([[0,0], [0,0]]); // Returns true.
2019-03-25 09:53:49 +00:00
// any([[0,0], [1,0]]); // Returns true.
2021-04-06 23:59:56 +00:00
function any ( l , func ) =
2020-08-03 23:38:36 +00:00
assert ( is_list ( l ) , "The input is not a list." )
2021-04-06 23:59:56 +00:00
assert ( func = = undef || is_func ( func ) )
is_func ( func )
? _any_func ( l , func )
: _any_bool ( l ) ;
2020-08-03 23:38:36 +00:00
2021-04-06 23:59:56 +00:00
function _any_func ( l , func , i = 0 , out = false ) =
i >= len ( l ) || out ? out :
_any_func ( l , func , i = i + 1 , out = out || func ( l [ i ] ) ) ;
function _any_bool ( l , i = 0 , out = false ) =
i >= len ( l ) || out ? out :
_any_bool ( l , i = i + 1 , out = out || l [ i ] ) ;
2020-07-29 21:41:02 +00:00
2019-03-23 04:13:18 +00:00
// Function: all()
2020-10-04 02:50:29 +00:00
// Usage:
2021-05-24 00:51:14 +00:00
// bool = all(l);
2021-07-02 10:30:13 +00:00
// bool = all(l, func); // Requires OpenSCAD 2021.01 or later.
2021-05-24 00:51:14 +00:00
// Requirements:
// Requires OpenSCAD 2021.01 or later to use the `func=` argument.
2019-03-25 09:53:49 +00:00
// Description:
2021-04-06 23:59:56 +00:00
// Returns true if all items in list `l` evaluate as true. If `func` is given a function liteal
// of signature (x), returning bool, then that function literal is evaluated for each list item.
2019-03-23 04:13:18 +00:00
// Arguments:
// l = The list to test for true items.
2021-04-06 23:59:56 +00:00
// func = An optional function literal of signature (x), returning bool, to test each list item with.
2019-03-23 04:13:18 +00:00
// Example:
2021-07-02 10:30:13 +00:00
// test1 = all([0,false,undef]); // Returns false.
// test2 = all([1,false,undef]); // Returns false.
// test3 = all([1,5,true]); // Returns true.
// test4 = all([[0,0], [0,0]]); // Returns true.
// test5 = all([[0,0], [1,0]]); // Returns true.
// test6 = all([[1,1], [1,1]]); // Returns true.
2021-04-06 23:59:56 +00:00
function all ( l , func ) =
assert ( is_list ( l ) , "The input is not a list." )
assert ( func = = undef || is_func ( func ) )
is_func ( func )
? _all_func ( l , func )
: _all_bool ( l ) ;
function _all_func ( l , func , i = 0 , out = true ) =
i >= len ( l ) || ! out ? out :
_all_func ( l , func , i = i + 1 , out = out && func ( l [ i ] ) ) ;
2020-08-03 23:38:36 +00:00
2021-04-06 23:59:56 +00:00
function _all_bool ( l , i = 0 , out = true ) =
i >= len ( l ) || ! out ? out :
_all_bool ( l , i = i + 1 , out = out && l [ i ] ) ;
2020-07-29 21:41:02 +00:00
2019-03-29 00:46:35 +00:00
// Function: count_true()
// Usage:
2021-07-02 10:30:13 +00:00
// seq = count_true(l, [nmax=]);
// seq = count_true(l, func, [nmax=]); // Requires OpenSCAD 2021.01 or later.
2021-05-24 00:51:14 +00:00
// Requirements:
// Requires OpenSCAD 2021.01 or later to use the `func=` argument.
2019-03-29 00:46:35 +00:00
// Description:
// Returns the number of items in `l` that evaluate as true.
// If `l` is a lists of lists, this is applied recursively to each
// sublist. Returns the total count of items that evaluate as true
// in all recursive sublists.
// Arguments:
// l = The list to test for true items.
2021-04-06 23:59:56 +00:00
// func = An optional function literal of signature (x), returning bool, to test each list item with.
// ---
// nmax = Max number of true items to count. Default: `undef` (no limit)
2019-03-29 00:46:35 +00:00
// Example:
2021-07-02 10:30:13 +00:00
// num1 = count_true([0,false,undef]); // Returns 0.
// num2 = count_true([1,false,undef]); // Returns 1.
// num3 = count_true([1,5,false]); // Returns 2.
// num4 = count_true([1,5,true]); // Returns 3.
// num5 = count_true([[0,0], [0,0]]); // Returns 2.
// num6 = count_true([[0,0], [1,0]]); // Returns 2.
// num7 = count_true([[1,1], [1,1]]); // Returns 2.
// num8 = count_true([[1,1], [1,1]], nmax=1); // Returns 1.
2021-04-06 23:59:56 +00:00
function count_true ( l , func , nmax ) =
assert ( is_list ( l ) )
assert ( func = = undef || is_func ( func ) )
is_func ( func )
? _count_true_func ( l , func , nmax )
: _count_true_bool ( l , nmax ) ;
function _count_true_func ( l , func , nmax , i = 0 , out = 0 ) =
i >= len ( l ) || ( nmax ! = undef && out >= nmax ) ? out :
_count_true_func (
l , func , nmax , i = i + 1 ,
out = out + ( func ( l [ i ] ) ? 1 : 0 )
) ;
2020-10-04 02:50:29 +00:00
2021-04-06 23:59:56 +00:00
function _count_true_bool ( l , nmax , i = 0 , out = 0 ) =
i >= len ( l ) || ( nmax ! = undef && out >= nmax ) ? out :
_count_true_bool (
l , nmax , i = i + 1 ,
out = out + ( l [ i ] ? 1 : 0 )
) ;
2020-07-29 21:41:02 +00:00
2020-03-01 23:42:12 +00:00
2020-02-27 22:32:03 +00:00
// Section: Calculus
2020-03-01 03:56:24 +00:00
// Function: deriv()
2020-10-04 02:50:29 +00:00
// Usage:
// x = deriv(data, [h], [closed])
2020-02-27 22:32:03 +00:00
// Description:
// Computes a numerical derivative estimate of the data, which may be scalar or vector valued.
// The `h` parameter gives the step size of your sampling so the derivative can be scaled correctly.
// If the `closed` parameter is true the data is assumed to be defined on a loop with data[0] adjacent to
// data[len(data)-1]. This function uses a symetric derivative approximation
// for internal points, f'(t) = (f(t+h)-f(t-h))/2h. For the endpoints (when closed=false) the algorithm
// uses a two point method if sufficient points are available: f'(t) = (3*(f(t+h)-f(t)) - (f(t+2*h)-f(t+h)))/2h.
2020-08-02 00:08:24 +00:00
// .
2020-06-14 02:35:22 +00:00
// If `h` is a vector then it is assumed to be nonuniform, with h[i] giving the sampling distance
// between data[i+1] and data[i], and the data values will be linearly resampled at each corner
// to produce a uniform spacing for the derivative estimate. At the endpoints a single point method
// is used: f'(t) = (f(t+h)-f(t))/h.
2020-07-29 21:41:02 +00:00
// Arguments:
// data = the list of the elements to compute the derivative of.
// h = the parametric sampling of the data.
// closed = boolean to indicate if the data set should be wrapped around from the end to the start.
2020-02-27 22:32:03 +00:00
function deriv ( data , h = 1 , closed = false ) =
2020-07-29 21:41:02 +00:00
assert ( is_consistent ( data ) , "Input list is not consistent or not numerical." )
assert ( len ( data ) >= 2 , "Input `data` should have at least 2 elements." )
assert ( is_finite ( h ) || is_vector ( h ) , "The sampling `h` must be a number or a list of numbers." )
assert ( is_num ( h ) || len ( h ) = = len ( data ) - ( closed ? 0 : 1 ) ,
str ( "Vector valued `h` must have length " , len ( data ) - ( closed ? 0 : 1 ) ) )
2020-06-14 02:35:22 +00:00
is_vector ( h ) ? _deriv_nonuniform ( data , h , closed = closed ) :
2020-05-30 02:04:34 +00:00
let ( L = len ( data ) )
2020-07-29 21:41:02 +00:00
closed
? [
2020-05-30 02:04:34 +00:00
for ( i = [ 0 : 1 : L - 1 ] )
( data [ ( i + 1 ) % L ] - data [ ( L + i - 1 ) % L ] ) / 2 / h
2020-07-29 21:41:02 +00:00
]
: let (
first = L < 3 ? data [ 1 ] - data [ 0 ] :
3 * ( data [ 1 ] - data [ 0 ] ) - ( data [ 2 ] - data [ 1 ] ) ,
last = L < 3 ? data [ L - 1 ] - data [ L - 2 ] :
( data [ L - 3 ] - data [ L - 2 ] ) - 3 * ( data [ L - 2 ] - data [ L - 1 ] )
)
[
2020-05-30 02:04:34 +00:00
first / 2 / h ,
for ( i = [ 1 : 1 : L - 2 ] ) ( data [ i + 1 ] - data [ i - 1 ] ) / 2 / h ,
last / 2 / h
2020-07-29 21:41:02 +00:00
] ;
2020-02-27 22:32:03 +00:00
2020-06-14 02:35:22 +00:00
function _dnu_calc ( f1 , fc , f2 , h1 , h2 ) =
let (
f1 = h2 < h1 ? lerp ( fc , f1 , h2 / h1 ) : f1 ,
f2 = h1 < h2 ? lerp ( fc , f2 , h1 / h2 ) : f2
2020-07-29 21:41:02 +00:00
)
( f2 - f1 ) / 2 / min ( h1 , h2 ) ;
2020-06-14 02:35:22 +00:00
function _deriv_nonuniform ( data , h , closed ) =
2020-07-29 21:41:02 +00:00
let ( L = len ( data ) )
closed
? [ for ( i = [ 0 : 1 : L - 1 ] )
_dnu_calc ( data [ ( L + i - 1 ) % L ] , data [ i ] , data [ ( i + 1 ) % L ] , select ( h , i - 1 ) , h [ i ] ) ]
2020-06-14 02:35:22 +00:00
: [
( data [ 1 ] - data [ 0 ] ) / h [ 0 ] ,
for ( i = [ 1 : 1 : L - 2 ] ) _dnu_calc ( data [ i - 1 ] , data [ i ] , data [ i + 1 ] , h [ i - 1 ] , h [ i ] ) ,
( data [ L - 1 ] - data [ L - 2 ] ) / h [ L - 2 ]
] ;
2020-03-01 03:56:24 +00:00
// Function: deriv2()
2020-10-04 02:50:29 +00:00
// Usage:
2021-06-27 03:59:33 +00:00
// x = deriv2(data, [h], [closed])
2020-02-27 22:32:03 +00:00
// Description:
2020-07-29 21:41:02 +00:00
// Computes a numerical estimate of the second derivative of the data, which may be scalar or vector valued.
2020-02-27 22:32:03 +00:00
// The `h` parameter gives the step size of your sampling so the derivative can be scaled correctly.
// If the `closed` parameter is true the data is assumed to be defined on a loop with data[0] adjacent to
// data[len(data)-1]. For internal points this function uses the approximation
2020-07-29 21:41:02 +00:00
// f''(t) = (f(t-h)-2*f(t)+f(t+h))/h^2. For the endpoints (when closed=false),
// when sufficient points are available, the method is either the four point expression
// f''(t) = (2*f(t) - 5*f(t+h) + 4*f(t+2*h) - f(t+3*h))/h^2 or
2020-02-27 22:32:03 +00:00
// f''(t) = (35*f(t) - 104*f(t+h) + 114*f(t+2*h) - 56*f(t+3*h) + 11*f(t+4*h)) / 12h^2
2020-07-29 21:41:02 +00:00
// if five points are available.
// Arguments:
// data = the list of the elements to compute the derivative of.
// h = the constant parametric sampling of the data.
// closed = boolean to indicate if the data set should be wrapped around from the end to the start.
2020-02-27 22:32:03 +00:00
function deriv2 ( data , h = 1 , closed = false ) =
2020-07-29 21:41:02 +00:00
assert ( is_consistent ( data ) , "Input list is not consistent or not numerical." )
assert ( is_finite ( h ) , "The sampling `h` must be a number." )
2020-05-30 02:04:34 +00:00
let ( L = len ( data ) )
2020-07-31 00:46:19 +00:00
assert ( L >= 3 , "Input list has less than 3 elements." )
closed
? [
2020-05-30 02:04:34 +00:00
for ( i = [ 0 : 1 : L - 1 ] )
( data [ ( i + 1 ) % L ] - 2 * data [ i ] + data [ ( L + i - 1 ) % L ] ) / h / h
2020-07-31 00:46:19 +00:00
]
:
2020-05-30 02:04:34 +00:00
let (
2020-07-31 00:46:19 +00:00
first =
2020-05-30 02:04:34 +00:00
L = = 3 ? data [ 0 ] - 2 * data [ 1 ] + data [ 2 ] :
L = = 4 ? 2 * data [ 0 ] - 5 * data [ 1 ] + 4 * data [ 2 ] - data [ 3 ] :
( 35 * data [ 0 ] - 104 * data [ 1 ] + 114 * data [ 2 ] - 56 * data [ 3 ] + 11 * data [ 4 ] ) / 12 ,
2020-07-31 00:46:19 +00:00
last =
2020-05-30 02:04:34 +00:00
L = = 3 ? data [ L - 1 ] - 2 * data [ L - 2 ] + data [ L - 3 ] :
L = = 4 ? - 2 * data [ L - 1 ] + 5 * data [ L - 2 ] - 4 * data [ L - 3 ] + data [ L - 4 ] :
( 35 * data [ L - 1 ] - 104 * data [ L - 2 ] + 114 * data [ L - 3 ] - 56 * data [ L - 4 ] + 11 * data [ L - 5 ] ) / 12
) [
first / h / h ,
for ( i = [ 1 : 1 : L - 2 ] ) ( data [ i + 1 ] - 2 * data [ i ] + data [ i - 1 ] ) / h / h ,
last / h / h
] ;
2020-02-27 22:32:03 +00:00
2020-03-01 03:56:24 +00:00
// Function: deriv3()
2020-10-04 02:50:29 +00:00
// Usage:
2021-06-27 03:59:33 +00:00
// x = deriv3(data, [h], [closed])
2020-02-27 22:32:03 +00:00
// Description:
// Computes a numerical third derivative estimate of the data, which may be scalar or vector valued.
// The `h` parameter gives the step size of your sampling so the derivative can be scaled correctly.
// If the `closed` parameter is true the data is assumed to be defined on a loop with data[0] adjacent to
2020-07-29 21:41:02 +00:00
// data[len(data)-1]. This function uses a five point derivative estimate, so the input data must include
// at least five points:
2020-02-27 22:32:03 +00:00
// f'''(t) = (-f(t-2*h)+2*f(t-h)-2*f(t+h)+f(t+2*h)) / 2h^3. At the first and second points from the end
// the estimates are f'''(t) = (-5*f(t)+18*f(t+h)-24*f(t+2*h)+14*f(t+3*h)-3*f(t+4*h)) / 2h^3 and
// f'''(t) = (-3*f(t-h)+10*f(t)-12*f(t+h)+6*f(t+2*h)-f(t+3*h)) / 2h^3.
2020-10-04 02:50:29 +00:00
// Arguments:
// data = the list of the elements to compute the derivative of.
// h = the constant parametric sampling of the data.
// closed = boolean to indicate if the data set should be wrapped around from the end to the start.
2020-02-27 22:32:03 +00:00
function deriv3 ( data , h = 1 , closed = false ) =
2020-07-29 21:41:02 +00:00
assert ( is_consistent ( data ) , "Input list is not consistent or not numerical." )
assert ( len ( data ) >= 5 , "Input list has less than 5 elements." )
assert ( is_finite ( h ) , "The sampling `h` must be a number." )
2020-05-30 02:04:34 +00:00
let (
L = len ( data ) ,
h3 = h * h * h
)
closed ? [
for ( i = [ 0 : 1 : L - 1 ] )
( - data [ ( L + i - 2 ) % L ] + 2 * data [ ( L + i - 1 ) % L ] - 2 * data [ ( i + 1 ) % L ] + data [ ( i + 2 ) % L ] ) / 2 / h3
] :
let (
first = ( - 5 * data [ 0 ] + 18 * data [ 1 ] - 24 * data [ 2 ] + 14 * data [ 3 ] - 3 * data [ 4 ] ) / 2 ,
second = ( - 3 * data [ 0 ] + 10 * data [ 1 ] - 12 * data [ 2 ] + 6 * data [ 3 ] - data [ 4 ] ) / 2 ,
last = ( 5 * data [ L - 1 ] - 18 * data [ L - 2 ] + 24 * data [ L - 3 ] - 14 * data [ L - 4 ] + 3 * data [ L - 5 ] ) / 2 ,
prelast = ( 3 * data [ L - 1 ] - 10 * data [ L - 2 ] + 12 * data [ L - 3 ] - 6 * data [ L - 4 ] + data [ L - 5 ] ) / 2
) [
first / h3 ,
second / h3 ,
for ( i = [ 2 : 1 : L - 3 ] ) ( - data [ i - 2 ] + 2 * data [ i - 1 ] - 2 * data [ i + 1 ] + data [ i + 2 ] ) / 2 / h3 ,
prelast / h3 ,
last / h3
] ;
2020-06-18 21:50:25 +00:00
// Section: Complex Numbers
2021-03-13 01:36:34 +00:00
// Function: complex()
// Usage:
// z = complex(list)
// Description:
// Converts a real valued number, vector or matrix into its complex analog
// by replacing all entries with a 2-vector that has zero imaginary part.
function complex ( list ) =
is_num ( list ) ? [ list , 0 ] :
[ for ( entry = list ) is_num ( entry ) ? [ entry , 0 ] : complex ( entry ) ] ;
2021-03-13 00:17:03 +00:00
// Function: c_mul()
2020-10-04 02:50:29 +00:00
// Usage:
2021-03-13 00:17:03 +00:00
// c = c_mul(z1,z2)
2020-06-18 21:50:25 +00:00
// Description:
2021-03-13 01:36:34 +00:00
// Multiplies two complex numbers, vectors or matrices, where complex numbers
// or entries are represented as vectors: [REAL, IMAGINARY]. Note that all
// entries in both arguments must be complex.
2020-10-04 02:50:29 +00:00
// Arguments:
2021-03-13 01:36:34 +00:00
// z1 = First complex number, vector or matrix
// z2 = Second complex number, vector or matrix
2021-07-02 10:30:13 +00:00
function c_mul ( z1 , z2 ) =
is_matrix ( [ z1 , z2 ] , 2 , 2 ) ? _c_mul ( z1 , z2 ) :
_combine_complex ( _c_mul ( _split_complex ( z1 ) , _split_complex ( z2 ) ) ) ;
2021-03-13 01:36:34 +00:00
function _split_complex ( data ) =
2021-07-02 10:30:13 +00:00
is_vector ( data , 2 ) ? data
: is_num ( data [ 0 ] [ 0 ] ) ? [ data * [ 1 , 0 ] , data * [ 0 , 1 ] ]
: [
[ for ( vec = data ) vec * [ 1 , 0 ] ] ,
[ for ( vec = data ) vec * [ 0 , 1 ] ]
] ;
2021-03-13 01:36:34 +00:00
function _combine_complex ( data ) =
is_vector ( data , 2 ) ? data
2021-07-02 10:30:13 +00:00
: is_num ( data [ 0 ] [ 0 ] ) ? [ for ( i = [ 0 : len ( data [ 0 ] ) - 1 ] ) [ data [ 0 ] [ i ] , data [ 1 ] [ i ] ] ]
: [ for ( i = [ 0 : 1 : len ( data [ 0 ] ) - 1 ] )
[ for ( j = [ 0 : 1 : len ( data [ 0 ] [ 0 ] ) - 1 ] )
[ data [ 0 ] [ i ] [ j ] , data [ 1 ] [ i ] [ j ] ] ] ] ;
2021-03-13 01:36:34 +00:00
function _c_mul ( z1 , z2 ) =
2020-07-29 21:41:02 +00:00
[ z1 . x * z2 . x - z1 . y * z2 . y , z1 . x * z2 . y + z1 . y * z2 . x ] ;
2020-06-18 21:50:25 +00:00
2021-03-13 01:36:34 +00:00
2021-03-13 00:17:03 +00:00
// Function: c_div()
2020-10-04 02:50:29 +00:00
// Usage:
2021-03-13 00:17:03 +00:00
// x = c_div(z1,z2)
2020-06-18 21:50:25 +00:00
// Description:
2020-07-29 21:41:02 +00:00
// Divides two complex numbers represented by 2D vectors.
2020-10-04 02:50:29 +00:00
// Returns a complex number as a 2D vector [REAL, IMAGINARY].
// Arguments:
// z1 = First complex number, given as a 2D vector [REAL, IMAGINARY]
// z2 = Second complex number, given as a 2D vector [REAL, IMAGINARY]
2021-03-13 00:17:03 +00:00
function c_div ( z1 , z2 ) =
2020-07-29 21:41:02 +00:00
assert ( is_vector ( z1 , 2 ) && is_vector ( z2 ) , "Complex numbers should be represented by 2D vectors." )
assert ( ! approx ( z2 , 0 ) , "The divisor `z2` cannot be zero." )
let ( den = z2 . x * z2 . x + z2 . y * z2 . y )
[ ( z1 . x * z2 . x + z1 . y * z2 . y ) / den , ( z1 . y * z2 . x - z1 . x * z2 . y ) / den ] ;
2020-06-18 21:50:25 +00:00
2021-03-13 01:36:34 +00:00
// Function: c_conj()
// Usage:
// w = c_conj(z)
// Description:
// Computes the complex conjugate of the input, which can be a complex number,
// complex vector or complex matrix.
function c_conj ( z ) =
is_vector ( z , 2 ) ? [ z . x , - z . y ] :
[ for ( entry = z ) c_conj ( entry ) ] ;
2021-07-02 10:30:13 +00:00
2021-03-13 01:36:34 +00:00
// Function: c_real()
// Usage:
// x = c_real(z)
// Description:
// Returns real part of a complex number, vector or matrix.
function c_real ( z ) =
is_vector ( z , 2 ) ? z . x
: is_num ( z [ 0 ] [ 0 ] ) ? z * [ 1 , 0 ]
: [ for ( vec = z ) vec * [ 1 , 0 ] ] ;
2021-07-02 10:30:13 +00:00
2021-03-13 01:36:34 +00:00
// Function: c_imag()
// Usage:
// x = c_imag(z)
// Description:
// Returns imaginary part of a complex number, vector or matrix.
function c_imag ( z ) =
is_vector ( z , 2 ) ? z . y
: is_num ( z [ 0 ] [ 0 ] ) ? z * [ 0 , 1 ]
: [ for ( vec = z ) vec * [ 0 , 1 ] ] ;
// Function: c_ident()
// Usage:
// I = c_ident(n)
// Description:
// Produce an n by n complex identity matrix
function c_ident ( n ) = [ for ( i = [ 0 : 1 : n - 1 ] ) [ for ( j = [ 0 : 1 : n - 1 ] ) ( i = = j ) ? [ 1 , 0 ] : [ 0 , 0 ] ] ] ;
2021-07-02 10:30:13 +00:00
2021-03-13 01:36:34 +00:00
// Function: c_norm()
// Usage:
// n = c_norm(z)
// Description:
// Compute the norm of a complex number or vector.
function c_norm ( z ) = norm_fro ( z ) ;
2021-07-02 10:30:13 +00:00
2020-06-18 21:50:25 +00:00
// Section: Polynomials
2020-09-01 21:57:31 +00:00
// Function: quadratic_roots()
// Usage:
2021-07-02 10:30:13 +00:00
// roots = quadratic_roots(a, b, c, [real])
2020-09-01 21:57:31 +00:00
// Description:
// Computes roots of the quadratic equation a*x^2+b*x+c==0, where the
// coefficients are real numbers. If real is true then returns only the
2020-09-01 22:43:53 +00:00
// real roots. Otherwise returns a pair of complex values. This method
// may be more reliable than the general root finder at distinguishing
// real roots from complex roots.
2020-10-04 02:50:29 +00:00
// Algorithm from: https://people.csail.mit.edu/bkph/articles/Quadratics.pdf
2020-09-01 21:57:31 +00:00
function quadratic_roots ( a , b , c , real = false ) =
real ? [ for ( root = quadratic_roots ( a , b , c , real = false ) ) if ( root . y = = 0 ) root . x ]
:
is_undef ( b ) && is_undef ( c ) && is_vector ( a , 3 ) ? quadratic_roots ( a [ 0 ] , a [ 1 ] , a [ 2 ] ) :
assert ( is_num ( a ) && is_num ( b ) && is_num ( c ) )
assert ( a ! = 0 || b ! = 0 || c ! = 0 , "Quadratic must have a nonzero coefficient" )
a = = 0 && b = = 0 ? [ ] : // No solutions
a = = 0 ? [ [ - c / b , 0 ] ] :
let (
descrim = b * b - 4 * a * c ,
sqrt_des = sqrt ( abs ( descrim ) )
)
descrim < 0 ? // Complex case
[ [ - b , sqrt_des ] ,
[ - b , - sqrt_des ] ] / 2 / a :
b < 0 ? // b positive
[ [ 2 * c / ( - b + sqrt_des ) , 0 ] ,
[ ( - b + sqrt_des ) / a / 2 , 0 ] ]
: // b negative
[ [ ( - b - sqrt_des ) / 2 / a , 0 ] ,
[ 2 * c / ( - b - sqrt_des ) , 0 ] ] ;
2020-07-29 21:41:02 +00:00
// Function: polynomial()
2020-06-18 21:50:25 +00:00
// Usage:
2020-10-04 02:50:29 +00:00
// x = polynomial(p, z)
2020-06-18 21:50:25 +00:00
// Description:
// Evaluates specified real polynomial, p, at the complex or real input value, z.
// The polynomial is specified as p=[a_n, a_{n-1},...,a_1,a_0]
// where a_n is the z^n coefficient. Polynomial coefficients are real.
2020-07-29 21:41:02 +00:00
// The result is a number if `z` is a number and a complex number otherwise.
function polynomial ( p , z , k , total ) =
2021-03-13 01:36:34 +00:00
is_undef ( k )
? assert ( is_vector ( p ) , "Input polynomial coefficients must be a vector." )
assert ( is_finite ( z ) || is_vector ( z , 2 ) , "The value of `z` must be a real or a complex number." )
polynomial ( _poly_trim ( p ) , z , 0 , is_num ( z ) ? 0 : [ 0 , 0 ] )
: k = = len ( p ) ? total
: polynomial ( p , z , k + 1 , is_num ( z ) ? total * z + p [ k ] : c_mul ( total , z ) + [ p [ k ] , 0 ] ) ;
2020-06-18 21:50:25 +00:00
2021-04-06 23:59:56 +00:00
2020-07-11 16:22:59 +00:00
// Function: poly_mult()
2020-07-27 22:15:34 +00:00
// Usage:
2020-10-04 02:50:29 +00:00
// x = polymult(p,q)
// x = polymult([p1,p2,p3,...])
2020-07-29 21:41:02 +00:00
// Description:
2021-06-22 00:20:05 +00:00
// Given a list of polynomials represented as real algebraic coefficient lists, with the highest degree coefficient first,
2020-07-11 16:22:59 +00:00
// computes the coefficient list of the product polynomial.
2020-07-29 21:41:02 +00:00
function poly_mult ( p , q ) =
2021-03-13 01:36:34 +00:00
is_undef ( q ) ?
len ( p ) = = 2
2020-08-03 23:38:36 +00:00
? poly_mult ( p [ 0 ] , p [ 1 ] )
2021-03-30 07:46:59 +00:00
: poly_mult ( p [ 0 ] , poly_mult ( list_tail ( p ) ) )
2021-03-13 01:36:34 +00:00
:
assert ( is_vector ( p ) && is_vector ( q ) , "Invalid arguments to poly_mult" )
2020-08-03 23:38:36 +00:00
p * p = = 0 || q * q = = 0
? [ 0 ]
: _poly_trim ( convolve ( p , q ) ) ;
2020-07-29 21:41:02 +00:00
2020-07-11 16:22:59 +00:00
// Function: poly_div()
// Usage:
// [quotient,remainder] = poly_div(n,d)
// Description:
// Computes division of the numerator polynomial by the denominator polynomial and returns
// a list of two polynomials, [quotient, remainder]. If the division has no remainder then
2021-06-22 00:20:05 +00:00
// the zero polynomial [0] is returned for the remainder. Similarly if the quotient is zero
// the returned quotient will be [0].
2020-08-03 23:38:36 +00:00
function poly_div ( n , d ) =
assert ( is_vector ( n ) && is_vector ( d ) , "Invalid polynomials." )
let ( d = _poly_trim ( d ) ,
n = _poly_trim ( n ) )
assert ( d ! = [ 0 ] , "Denominator cannot be a zero polynomial." )
n = = [ 0 ]
? [ [ 0 ] , [ 0 ] ]
: _poly_div ( n , d , q = [ ] ) ;
function _poly_div ( n , d , q ) =
len ( n ) < len ( d ) ? [ q , _poly_trim ( n ) ] :
let (
t = n [ 0 ] / d [ 0 ] ,
newq = concat ( q , [ t ] ) ,
newn = [ for ( i = [ 1 : 1 : len ( n ) - 1 ] ) i < len ( d ) ? n [ i ] - t * d [ i ] : n [ i ] ]
)
_poly_div ( newn , d , newq ) ;
2020-07-11 16:22:59 +00:00
2021-02-20 03:56:43 +00:00
/// Internal Function: _poly_trim()
/// Usage:
2021-07-02 10:30:13 +00:00
/// _poly_trim(p, [eps])
2021-02-20 03:56:43 +00:00
/// Description:
/// Removes leading zero terms of a polynomial. By default zeros must be exact,
2021-06-22 00:20:05 +00:00
/// or give epsilon for approximate zeros. Returns [0] for a zero polynomial.
2020-07-11 16:22:59 +00:00
function _poly_trim ( p , eps = 0 ) =
2020-07-29 21:41:02 +00:00
let ( nz = [ for ( i = [ 0 : 1 : len ( p ) - 1 ] ) if ( ! approx ( p [ i ] , 0 , eps ) ) i ] )
2021-03-30 07:46:59 +00:00
len ( nz ) = = 0 ? [ 0 ] : list_tail ( p , nz [ 0 ] ) ;
2020-07-11 16:22:59 +00:00
// Function: poly_add()
// Usage:
// sum = poly_add(p,q)
// Description:
// Computes the sum of two polynomials.
function poly_add ( p , q ) =
2020-07-29 21:41:02 +00:00
assert ( is_vector ( p ) && is_vector ( q ) , "Invalid input polynomial(s)." )
let ( plen = len ( p ) ,
qlen = len ( q ) ,
long = plen > qlen ? p : q ,
short = plen > qlen ? q : p
)
_poly_trim ( long + concat ( repeat ( 0 , len ( long ) - len ( short ) ) , short ) ) ;
2020-07-11 16:22:59 +00:00
2020-06-18 21:50:25 +00:00
// Function: poly_roots()
// Usage:
2021-07-02 10:30:13 +00:00
// roots = poly_roots(p, [tol]);
2020-06-18 21:50:25 +00:00
// Description:
// Returns all complex roots of the specified real polynomial p.
// The polynomial is specified as p=[a_n, a_{n-1},...,a_1,a_0]
// where a_n is the z^n coefficient. The tol parameter gives
// the stopping tolerance for the iteration. The polynomial
// must have at least one non-zero coefficient. Convergence is poor
// if the polynomial has any repeated roots other than zero.
// Arguments:
// p = polynomial coefficients with higest power coefficient first
// tol = tolerance for iteration. Default: 1e-14
// Uses the Aberth method https://en.wikipedia.org/wiki/Aberth_method
//
// Dario Bini. "Numerical computation of polynomial zeros by means of Aberth's Method", Numerical Algorithms, Feb 1996.
// https://www.researchgate.net/publication/225654837_Numerical_computation_of_polynomial_zeros_by_means_of_Aberth's_method
2020-07-11 16:22:59 +00:00
function poly_roots ( p , tol = 1e-14 , error_bound = false ) =
2020-07-29 21:41:02 +00:00
assert ( is_vector ( p ) , "Invalid polynomial." )
let ( p = _poly_trim ( p , eps = 0 ) )
assert ( p ! = [ 0 ] , "Input polynomial cannot be zero." )
p [ len ( p ) - 1 ] = = 0 ? // Strip trailing zero coefficients
2021-03-30 07:46:59 +00:00
let ( solutions = poly_roots ( list_head ( p ) , tol = tol , error_bound = error_bound ) )
2020-07-29 21:41:02 +00:00
( error_bound ? [ [ [ 0 , 0 ] , each solutions [ 0 ] ] , [ 0 , each solutions [ 1 ] ] ]
: [ [ 0 , 0 ] , each solutions ] ) :
len ( p ) = = 1 ? ( error_bound ? [ [ ] , [ ] ] : [ ] ) : // Nonzero constant case has no solutions
len ( p ) = = 2 ? let ( solution = [ [ - p [ 1 ] / p [ 0 ] , 0 ] ] ) // Linear case needs special handling
( error_bound ? [ solution , [ 0 ] ] : solution )
:
let (
n = len ( p ) - 1 , // polynomial degree
pderiv = [ for ( i = [ 0 : n - 1 ] ) p [ i ] * ( n - i ) ] ,
s = [ for ( i = [ 0 : 1 : n ] ) abs ( p [ i ] ) * ( 4 * ( n - i ) + 1 ) ] , // Error bound polynomial from Bini
// Using method from: http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/0915-24.pdf
beta = - p [ 1 ] / p [ 0 ] / n ,
r = 1 + pow ( abs ( polynomial ( p , beta ) / p [ 0 ] ) , 1 / n ) ,
init = [ for ( i = [ 0 : 1 : n - 1 ] ) // Initial guess for roots
let ( angle = 360 * i / n + 270 / n / PI )
[ beta , 0 ] + r * [ cos ( angle ) , sin ( angle ) ]
] ,
roots = _poly_roots ( p , pderiv , s , init , tol = tol ) ,
error = error_bound ? [ for ( xi = roots ) n * ( norm ( polynomial ( p , xi ) ) + tol * polynomial ( s , norm ( xi ) ) ) /
abs ( norm ( polynomial ( pderiv , xi ) ) - tol * polynomial ( s , norm ( xi ) ) ) ] : 0
)
error_bound ? [ roots , error ] : roots ;
// Internal function
2020-06-18 21:50:25 +00:00
// p = polynomial
// pderiv = derivative polynomial of p
// z = current guess for the roots
// tol = root tolerance
// i=iteration counter
function _poly_roots ( p , pderiv , s , z , tol , i = 0 ) =
assert ( i < 45 , str ( "Polyroot exceeded iteration limit. Current solution:" , z ) )
let (
n = len ( z ) ,
svals = [ for ( zk = z ) tol * polynomial ( s , norm ( zk ) ) ] ,
p_of_z = [ for ( zk = z ) polynomial ( p , zk ) ] ,
done = [ for ( k = [ 0 : n - 1 ] ) norm ( p_of_z [ k ] ) < = svals [ k ] ] ,
2021-03-13 00:17:03 +00:00
newton = [ for ( k = [ 0 : n - 1 ] ) c_div ( p_of_z [ k ] , polynomial ( pderiv , z [ k ] ) ) ] ,
zdiff = [ for ( k = [ 0 : n - 1 ] ) sum ( [ for ( j = [ 0 : n - 1 ] ) if ( j ! = k ) c_div ( [ 1 , 0 ] , z [ k ] - z [ j ] ) ] ) ] ,
w = [ for ( k = [ 0 : n - 1 ] ) done [ k ] ? [ 0 , 0 ] : c_div ( newton [ k ] ,
[ 1 , 0 ] - c_mul ( newton [ k ] , zdiff [ k ] ) ) ]
2020-06-18 21:50:25 +00:00
)
all ( done ) ? z : _poly_roots ( p , pderiv , s , z - w , tol , i + 1 ) ;
// Function: real_roots()
// Usage:
2021-07-02 10:30:13 +00:00
// roots = real_roots(p, [eps], [tol])
2020-06-18 21:50:25 +00:00
// Description:
// Returns the real roots of the specified real polynomial p.
// The polynomial is specified as p=[a_n, a_{n-1},...,a_1,a_0]
// where a_n is the x^n coefficient. This function works by
// computing the complex roots and returning those roots where
2020-07-11 16:22:59 +00:00
// the imaginary part is closed to zero. By default it uses a computed
// error bound from the polynomial solver to decide whether imaginary
// parts are zero. You can specify eps, in which case the test is
// z.y/(1+norm(z)) < eps. Because
2020-06-18 21:50:25 +00:00
// of poor convergence and higher error for repeated roots, such roots may
2021-05-22 00:21:50 +00:00
// be missed by the algorithm because their imaginary part is large.
2020-06-18 21:50:25 +00:00
// Arguments:
// p = polynomial to solve as coefficient list, highest power term first
// eps = used to determine whether imaginary parts of roots are zero
// tol = tolerance for the complex polynomial root finder
2021-05-22 00:21:50 +00:00
// The algorithm is based on Brent's method and is a combination of
// bisection and inverse quadratic approximation, where bisection occurs
// at every step, with refinement using inverse quadratic approximation
// only when that approximation gives a good result. The detail
// of how to decide when to use the quadratic came from an article
// by Crenshaw on "The World's Best Root Finder".
// https://www.embedded.com/worlds-best-root-finder/
2020-07-11 16:22:59 +00:00
function real_roots ( p , eps = undef , tol = 1e-14 ) =
2020-07-29 21:41:02 +00:00
assert ( is_vector ( p ) , "Invalid polynomial." )
let ( p = _poly_trim ( p , eps = 0 ) )
assert ( p ! = [ 0 ] , "Input polynomial cannot be zero." )
let (
2020-07-11 16:22:59 +00:00
roots_err = poly_roots ( p , error_bound = true ) ,
roots = roots_err [ 0 ] ,
err = roots_err [ 1 ]
2020-07-29 21:41:02 +00:00
)
is_def ( eps )
? [ for ( z = roots ) if ( abs ( z . y ) / ( 1 + norm ( z ) ) < eps ) z . x ]
: [ for ( i = idx ( roots ) ) if ( abs ( roots [ i ] . y ) < = err [ i ] ) roots [ i ] . x ] ;
2020-05-30 02:04:34 +00:00
2021-05-21 23:03:07 +00:00
// Section: Operations on Functions
// Function: root_find()
// Usage:
// x = root_find(f, x0, x1, [tol])
// Description:
// Find a root of the continuous function f where the sign of f(x0) is different
// from the sign of f(x1). The function f is a function literal accepting one
// argument. You must have a version of OpenSCAD that supports function literals
// (2021.01 or newer). The tolerance (tol) specifies the accuracy of the solution:
// abs(f(x)) < tol * yrange, where yrange is the range of observed function values.
// This function can only find roots that cross the x axis: it cannot find the
// the root of x^2.
// Arguments:
2021-07-02 10:30:13 +00:00
// f = function literal for a scalar-valued single variable function
2021-05-21 23:03:07 +00:00
// x0 = endpoint of interval to search for root
// x1 = second endpoint of interval to search for root
// tol = tolerance for solution. Default: 1e-15
function root_find ( f , x0 , x1 , tol = 1e-15 ) =
let (
y0 = f ( x0 ) ,
y1 = f ( x1 ) ,
yrange = y0 < y1 ? [ y0 , y1 ] : [ y1 , y0 ]
)
// Check endpoints
y0 = = 0 || _rfcheck ( x0 , y0 , yrange , tol ) ? x0 :
y1 = = 0 || _rfcheck ( x1 , y1 , yrange , tol ) ? x1 :
assert ( y0 * y1 < 0 , "Sign of function must be different at the interval endpoints" )
_rootfind ( f , [ x0 , x1 ] , [ y0 , y1 ] , yrange , tol ) ;
function _rfcheck ( x , y , range , tol ) =
assert ( is_finite ( y ) , str ( "Function not finite at " , x ) )
abs ( y ) < tol * ( range [ 1 ] - range [ 0 ] ) ;
// xpts and ypts are arrays whose first two entries contain the
// interval bracketing the root. Extra entries are ignored.
// yrange is the total observed range of y values (used for the
// tolerance test).
function _rootfind ( f , xpts , ypts , yrange , tol , i = 0 ) =
assert ( i < 100 , "root_find did not converge to a solution" )
let (
xmid = ( xpts [ 0 ] + xpts [ 1 ] ) / 2 ,
ymid = f ( xmid ) ,
yrange = [ min ( ymid , yrange [ 0 ] ) , max ( ymid , yrange [ 1 ] ) ]
)
_rfcheck ( xmid , ymid , yrange , tol ) ? xmid :
let (
// Force root to be between x0 and midpoint
y = ymid * ypts [ 0 ] < 0 ? [ ypts [ 0 ] , ymid , ypts [ 1 ] ]
: [ ypts [ 1 ] , ymid , ypts [ 0 ] ] ,
x = ymid * ypts [ 0 ] < 0 ? [ xpts [ 0 ] , xmid , xpts [ 1 ] ]
: [ xpts [ 1 ] , xmid , xpts [ 0 ] ] ,
v = y [ 2 ] * ( y [ 2 ] - y [ 0 ] ) - 2 * y [ 1 ] * ( y [ 1 ] - y [ 0 ] )
)
v < = 0 ? _rootfind ( f , x , y , yrange , tol , i + 1 ) // Root is between first two points, extra 3rd point doesn't hurt
:
let ( // Do quadratic approximation
B = ( x [ 1 ] - x [ 0 ] ) / ( y [ 1 ] - y [ 0 ] ) ,
C = y * [ - 1 , 2 , - 1 ] / ( y [ 2 ] - y [ 1 ] ) / ( y [ 2 ] - y [ 0 ] ) ,
newx = x [ 0 ] - B * y [ 0 ] * ( 1 - C * y [ 1 ] ) ,
newy = f ( newx ) ,
new_yrange = [ min ( yrange [ 0 ] , newy ) , max ( yrange [ 1 ] , newy ) ] ,
// select interval that contains the root by checking sign
yinterval = newy * y [ 0 ] < 0 ? [ y [ 0 ] , newy ] : [ newy , y [ 1 ] ] ,
xinterval = newy * y [ 0 ] < 0 ? [ x [ 0 ] , newx ] : [ newx , x [ 1 ] ]
)
_rfcheck ( newx , newy , new_yrange , tol )
? newx
: _rootfind ( f , xinterval , yinterval , new_yrange , tol , i + 1 ) ;
2020-08-27 01:02:16 +00:00
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap